

IC4M 2021 International Conference

Advances in Materials, Mechanics, Mechatronics and Manufacturing

MARCH 6-7, 2021 / INDIA

About Conference

IC4M 2021 is an International Peer-reviewed Academic Conference on Advances in Materials, Mechanics, Mechatronics and Manufacturing (4 'M's) being organized online on March 6 & 7, 2021. The conference aims at providing a platform to discuss and exchange high quality academic research ideas among researchers, engineers, academicians, industrial professionals and practitioners from all over the globe.

This conference will focus to fetch the attention of industry and academia on the understanding of 4 'M's' and their interlinking in the present times.

Over last two decade the world is witnessing constructive changes due to technological advancements at an exceptional rate. Hence in an attempt to encourage young researchers, several world-renowned experts have been invited from the thematic areas to share their years of knowledge and wisdom during the plenary lecture sessions with the participants. Conference also aims to provide an opportunity for the participant researchers to discuss the topics among themselves and enhance their knowledge in the respective domain.

IC4M 2021 would not just be a conference but a great online meet up for all the technocrats. It will help provide the ground for future high quality research collaborations from across the world enhancing the precision of work in the field of 4 'M's.

Message from Vice-Chancellor

Professor Philip Plowden Vice-Chancellor Birmingham City University, UK All of us at **Birmingham City University** would like to extend our best wishes for the Conference this year.

It is our pleasure to be involved with the event, particularly when the organisers share our belief of the importance of education as a tool for empowerment, social development and transformation.

We are proud to have many fruitful partnerships across India and I have no doubt that the Conference will be the latest activity to enhance and enrich the University's presence in India.

We wish you every success.

Professor Philip Plowden

DEV SANSKRITI VISHWAVIDYALAYA

Message from Pro Vice-Chancellor

Dr. Chinmay Pandya

(MBBS, PGDipl, MRCPsyche – London) Pro Vice Chancellor, Dev Sanskriti Vishwavidyalaya, Gayatrikunj, Haridwar

Dear Hosts, Participants & Collaborators

I am glad to note that Yajurvedam: An Association for Educational Empowerment and Social Welfare and M/s Gayatri Auto Industries are organizing International Conference on Advances in Materials, Mechanics, Mechatronics and Manufacturing (IC4M 2021) during March 06-07 2021.

It is a matter of great pride that this prestigious conference is being hosted by joint collaboration of Birmingham City University (UK), Canadian Centre (Canada), Mahrajpura Industrial Association, Gwalior; Indian Institute of Welding, Indian Institution of Industrial Engineering, Additive Manufacturing Society of India, Institution of Engineers (Gwalior Chapter), and Computer Society of India (Gwalior Chapter).

May the blessings of Vedmurti Taponisht Param Pujya Gurudev & Param Vandaniya Mataji make this event successful.

he P_

Dr. Chinmay Pandya

Message from Dr. V K Jain

Dr. Vijay Kumar Jain Professor (Retd.) Indian Institute of Technology Kanpur, INDIA I am happy to see that the International Conference on **ADVANCES** IN MATERIALS, **MECHANICS**, **MECHATRONICS** AND MANUFACTURING (IC4M2021) is being organized. I hope that the participants will be benefitted by learning the new research activities going on in 4 M (Materials, Mechanics, Mechatronics and Manufacturing) areas across the globes. Also, the participants (faculty members, research scholars, PG scholars, industry personnel and practitioners) will have opportunity to on-line interact with the experts who are going to present their research work from different parts of the world.I am sure they will have an excellent opportunity sitting at home and listening different experts of their fields. I will definitely like to mention that such activities will be more useful especially for the developing and under developed countries if they can introduce new subjects in their undergraduate and postgraduate curriculums based on these new developed / developing areas. I hope you will

agree with me that "No country can be economic leader unless they are in the forefront of R & D activities". For that, you need researchers and scientists who are 'Honest, sincere, hardworking and have Junoon (passion) towards their goal'. To be a successful researcher / scientist, you have to be keen observer.

With these words, I wish all the best to the organizers of IC4M-2021 in terms of very good response from the speakers as well as audience (participants).

Dr. Vijay Kumar Jain

Message from Director, REC Mainpuri

Dr. Jitendra Kumar Sharma Director Rajkiya Engineering College, Mainpuri, India

It's a matter of pleasure that "An International Conference on Advances in Materials, Mechanics, Mechatronics and Manufacturing (IC4M-2021)" is being organised by 'Yajurvedam: An Association for Educational Empowerment & Social Welfare' and 'Gayatri Auto Industries' jointly on 06-07 March, 2021.

I wish that IC4M 2021 will bring together the National and International talents focusing on excellent opportunities for researchers, scientists and industrialists to share and converse on the recent advancements in the areas of Mechanical Engineering, Mechatronics and Materials Science. Undoubtedly, Mechanical Engineering has played a key role in transforming our society to a "high tech" in the recent decades and the pace of change can only be described as constructive. The Technology itself is progressing and exploring new horizons.

I hope eminent speakers will cover the theme of Materials, Mechanics, Mechatronics and Manufacturing from different perspectives. I am privileged to say that this conference will definitely offer suitable solutions to the global issues.

I congratulate the organizing team of IC4M-2021 and wish that the conference will be a great success and help in improving productivity, product quality and safe working environment in the applied fields for the society at large.

Dr. Jitendra Kumar Sharma

Message from President, Additive Manufacturing Society of India

Dr. L. Jyothish Kumar President Additive Manufacturing Society of India I am delighted to know that 'Yajurvedam: An Association for Educational Empowerment & Social Welfare' and 'Gayatri Auto Industries' are jointly organizing an International Conference on Advances in Material Mechanics Mechatronics & Manufacturing on March 06 & 07, 2021. This Conference will further enhance the knowledge of faculty, research scholars and industry professionals.

In today's competitive world it is very significant to understand, learn and adopt the latest develoments of manufacturing, materials and related softwares to be on par with global manufacturing peers.

I wish the International Conference on Advances in Material Mechanics Mechatronics & Manufacturing conference a grand success and it provides a great platform to network and foster new technological collaborations to all the participants.

Dr. L. Jyothish Kumar

Computer Society of India Regional Vice President Region – III Head Office Address: Unit No. 3, 4th Floor, MIDC, Andheri East, Mumbai – 400093 Maharashtra Residence: 48, Anupam Nagar, City Centre, Gwalior 474011 Madhya Pradesh

Message from Vice President

Dr. Jayant S Bhide Regional Vice President Region III Computer Society of India Warmest greetings to the organizers of International Conference on Advances in Materials, Mechanics, Mechatronics and Manufacturing (IC4M 2021).

I am confident that the conference will definitely provide valuable knowledge and will be very useful for young and those who are working in the same platform. I would like to congratulate the organizers of the conference for selecting the subject which will give new direction and more knowledge.

My best wishes and full support to organizers and wish you all good luck.

Dr. Jayant S Bhide

Gwalior Local Chapter

Message from Vice Chairman

Er. R.K.Khetan Vice Chairman Gwalior Local Centre The Institution of Engineers (India) I am extremely happy and pleased to learn that an International Conference on Advances in Materials, Mehcanics, Mechatroincs and Manufacturing is being organised on 6 - 7 March' 2021 viz IC4M (2021) with so many International Institutes of repute.

The Conference topics are of immense use for the Education World, Research, Industry and for the Society.

On this occasion, my wish is that it meets its objects and I further hope all the best and a very successful conference.

R.K. Kunto

Er. R.K.Khetan

Message from Conference Chair

Dr. Ravi K Dwivedi of Technology Madhya Pradesh, India

On behalf of the organizing committee, it is with great pleasure to welcome you to the International Conference on Advances in Materials, Mechanics, Mechatronics and Manufacturing (IC4M 2021). IC4M has become the preeminent international forum on embracing all aspects from Fatigue and Fracture Mechanics, Modeling and Simulation, Reliability Analysis, Artificial Intelligence, Machine Learning, Medical Robotics, Mechatronics Design Control System, Advanced Construction Materials, Biomaterials, Composite Materials, Additive Lean & Green Manufacturing, CAD, CAE and CAM and many more.

This time, the conference offers five keynote speakers by distinguished persons in their own fields.

We are proud to have Prof.(Dr.) Nageswara Rao Posinasetti, Professor, University of Northen Iowa, USA, Prof. Dr. Raghu Echempati, Professor, Kettering Professor, Maulana Azad National Institute University, USA, Prof. (Dr.) V. K. Jain, Professor (Retired), Indian Institute of Technology Kanpur, INDIA, Dr. Rohan Shirwaiker, Associate Professor, N C State University, USA, he is also Associate Director, Functional Tissue

Engineering Program, Comparative Medicine Institute (CMI), USA, Prof.(Dr.) Anjali Awasthi Professor, Concordia University, Montreal, Canada as our keynote speakers.

The conference proceedings provide views into the current advances in the field of 4 'M's' i.e. Materials, Mechanics, Mechatronics and Manufacturing and how they are interlinked with the current scenario and the conference helps to build a relation and transfer of research ideas. We look forward to the presentations of our participants.

To all participants, I hope we can gain knowledge and benefits from the conference while making new contacts with other participants.

Dr. Ravi K Dwivedi

Message from Conference Co-Chair

Dr. Premanand S Chauhan Principal IPS College of Technology and Management, Gwalior

It is a matter of great pleasure that we are organizing an International Conference on Advances in Materials, Mechanics, Mechatronics & Manufacturing on March 06 & 07, 2021.

In the progress towards excellence in the field of materials, mechanics, mechatronics and manufacturing technology, new innovations and developments need to be shared and disseminated for ensuring continuous advancement and knowledge creation. Therefore it is my hope that the conference will provide a platform for exchange of noble ideas among researchers, academician and industrial practitioners all over the country and abroad.

This conference bears all the hallmarks of success. This is due to the great team work from international and national advisory committee members and organizing team members who I owe a deep depth of gratitude.

I am grateful to the associates of IC4M 2021 Birmingham City University UK, Canadian Centre for Inter Academic Research and Communication, Canada, Indian Institute of Welding (India), Indian Institution of Industrial

Engineering, Additive Manufacturing Society of India, Maharajpura Industrial Association, Computer Society of India (Gwalior Local Chapter) and the Institution of Engineers (Gwalior Local Chapter) for their generous support in organizing this conference. I pay my sincere regards to IOP Publishing for bringing out the proceedings. My thanks to members of the technical committee and reviewing committee for helping in the review of papers. Thanks to the promotional committee whose help is deeply appreciated.

Thanks to the printing committee for bringing out the fantastic souvenir which shares the highlights from IC4M 2021, gives sketches of keynote speakers, contains abstracts of all papers and photographs of all major volunteers.

Last but not the least are the authors whom I thank sincerely for contributing good papers and for attending this conference.

I sincerely hope that all the participants will actively deliberate in the conference and come out with recommendations for emerging trends in Materials, Mechanics Mechatronics & Manufacturing.

I extend my very best wishes for the success of the conference.

Dr. Premanand S Chauhan

Message from Coordinator

Dr. Avadesh K Sharma Associate Professor Rajkiya Engineering College, Mainpuri, India

On the behalf of organizing committee of "International Conference on Advances in Materials, Mechanics Mechatronics and Manufacturing (IC4M-2021), I extend a warm welcome to all the delegates from academia, research institutes and industries. The main aim of this conference is to provide an international academic forum to all the researchers, practitioners, professionals, faculty members and students in related field to share their knowledge and results from their experimental, analytical and computational work.

The Conference would consist of key note lectures from the various eminent speakers of international repute. Also there will be paper presentation by the participants from the country and abroad. Due to COVID-19 pandemic, we are organizing this conference through Online medium. We received more than 395 papers of which finally 77 good quality papers have been selected and registered. The papers cover a wide range of topics such as analysis and synthesis of mechanism, Finite Element Method, CFD, Computer assisted Manufacturing and Design, Composite

Materials, Alternative Fuels, Engineering Mechanics, Mechanical Vibration, Mechatronics, Robotics and Simulation.

We express our gratitude towards reviewers from many institutions and research organisations for helping in the peer review of research papers.

It has been a great privilege for me to serve as a coordinator of IC4M-2021 and it's my hope that you will find the conference stimulating, fulfilling and enjoyable.

I convey my sincere thanks to all of you for your support and wish you a pleasant experience in this knowledgeable conference.

Dr. Avadesh K Sharma

Message from Organizing Secretary

Dr. Anupma Agarwal Assistant Professor IPS College of Technology and Management, Gwalior I am greatly honored to serve as the Organizing Secretary of the IC4M2021 an **International Conference on Advances in Materials, Mechanics, Mechatronics and Manufacturing**. It gives me utmost pleasure to welcome you all on this virtual platform of IC4M2021.

This conference with the theme of Advances in Materials, Mechanics, Mechatronics and Manufacturing is the right platform to bring various stakeholders under one roof to discuss, exchange and explore the idea of technological advancement in the field of these four M's to make the life of people easier and more comfortable. Through this conference we put all our effort to drive the best practices of multi domain research on upfront. The plenary sessions by the eminent experts of their fields will surely stimulate the researchers to work on the most recent developments of technology.

I pay my gratitude to each and every one of you who has directly and indirectly associated with IC4M2021, provided their valuable services with full of dedication, presented their research ideas enthusiastically and making it a mega

event of its kind. The enthusiasm shown by all the people associated in the organization of the conference is truly remarkable.

I look forward to working with our research community including authors, reviewers, editors, and publication staff to take the conference to the new horizon of success!

Hope you all will continue to support us in future programs and this splice of faith will be stronger every time.

P, P

Dr. Anupma Agarwal

International Advisory Committee

Dr. Alok Sinha Professor Penn State Institute of Energy

and the Environment, USA

Dr. Farrokh Mistree Professor

University of Oklahoma, USA

Dr. Kamlakar Raju Professor University of Nebraska– Lincoln, USA

Dr. Brian Norton Professor and DIT President Dublin Energy Lab, Ireland

Dr. Noel Perera

Associate Professor and Director of Innovation and Enterprise Birmingham City University, Birmingham

Dr. Aditya Parida Professor Luleå University of Technology, Sweden

Dr. Khalid Abdelghany

Dean, Adv. Manufacturing Division The Central Metallurgical Research and Development Institute (CMRDI), Egypt

Dr. Raghu Echempati Professor Kettering University, USA

Dr. Anjali Awasthi

Professor and Concordia University Research Chair Concordia University, Canada

International Advisory Committee

Dr. Rohan Shirwaiker Associate Director/ Associate Professor CMI / N C State University, USA

Dr. Elammaran Jayamani Sr. Faculty Swinburne University of Technology Malaysia

Dr. Qureshi M.N. Associate Professor King Khalid University, Saudi Arabia

Mr. P B Sajeev Vice President Bharti Airtel International (Netherland) B.V., Kenya

Mr. Sachin Sharma Lead Planner Bechtel Corporation, Canada

Dr. Ruby Chakraborty Scientist HOYA Optical Corp. & Entrepreneur at Biena Tec, USA

Mr. Praveen Vaidya Plant Manager PPG Industries, USA

National Advisory Committee

Dr. V K Jain Retd. Professor Indian Institute of Technology Kanpur, INDIA

Dr. H. B. Khurasia Retd. Professor Maulana Azad National Institute of Technology, INDIA

Dr. R S Jadoun Professor G B Pant University, INDIA

Dr. S. G. Deshmukh Professor Indian Institute of Technology Delhi, INDIA

Dr. A M Kuthe Professor Visvesvaraya National Institute of Technology, INDIA

Dr. Lovi Raj Gupta Executive Dean Lovely Professional University, INDIA

Dr. Uday Dixit Professor Indian Institute of Technology Guwahati, INDIA

Dr. Puneet Tandon Professor PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, INDIA

Dr. Balwinder Singh Sidhu Professor GZS CET Bathinda, INDIA

National Advisory Committee

Dr. Ajay Shrivastava Professor University of Petrolium, INDIA

Mr. Parimal Biswas President Indian Institute of Welding, INDIA

Dr. L. Jyothish Kumar President Additive Manufacturing Society of India, INDIA

Dr. Prasoon Kumar Singh Associate Professor Indian Institute of Technology (ISM), Dhanbad, INDIA

Dr. Prasant K Jain Associate Professor Indian Institute of Information Technology, Design and Management Jabalpur, INDIA

Dr. Jawar Singh Associate Professor Indian Institute of Technology Patna, INDIA

Dr. Balkrishna Eknath Narkhede Associate Professor National Institute of Industrial

Engineering, INDIA

Dr. Pavan Kankar

Associate Professor Indian Institute of Technology Indore, INDIA

Dr. Arun Kumar Tiwari

Associate Professor Institute of Engineering and Technology, INDIA

National Advisory Committee

Mr. J S Bhide Regional Vice President,Region-3 Computer Society of India, INDIA

Mr. Prabhat Bhargava

President, IE(India) Gwalior Chapter Institution of Engineers (INDIA)

Mr. R K Khetan

Vice-President, IE(India) Gwalior Chapter Institution of Engineers (INDIA)

Mr. Avinash Mishra General Manager HR Godrej Consumer Products Ltd., INDIA

Mr. Sunil Khandelwal GM NHK Spring India Limited, INDIA

Mr. Sushil Surana Secretary Maharajpura Industrial Association, INDIA

Organizing Committee

Dr. Ravi K Dwivedi Professor Maulana Azad National Institute of Technology, Bhopal Conference Chair

Dr. Premanand S Chauhan

Principal IPS College of Technology and Management, Gwalior Conference Co-Chair

Dr. R S Jadoun Professor G B Pant University of Agriculture & Technology, Pant Nagar Technical Chair

Dr. Avadesh K Sharma Associate Professor Rajkiya Engineering College, Mainpuri Coordinator

Dr. Elammaran Jayamani

Sr. Faculty Swinburne University of Technology, Malaysia

> Technical Co-chair (Mechatronics)

Mr. Sushil Surana Secretary Maharajpura Industrial Association, INDIA Organizing Secretary

Dr. Soon KokHeng

Sr. Faculty Swinburne University of Technology, Malaysia

Technical Co-chair (Mechanics & Design)

Dr. Akshay Dwivedi Professor Indian Institute of Technology Roorkee Technical Co-chair (Manufacturing)

Dr. Rahul Sikarwar Associate Professor Vellore Institute of Technology, Vellore

> Technical Co-chair (Materials)

Organizing Committee

Dr. Madhavi Singh Assistant Professor Penn State College of Medicine, USA

International Collaboration Co-chair

Mr. Jagat Mishra Director CCI-ARC Inc., Canada

International Collaboration Co-chair

Dr. S. K. Panigrahi Associate Professor VSSUT BURLA, Sambalpur

National Collaboration Co-chair

Dr. Santosh B. Rane Dean Academics Sardar Patel COE, Mumbai National Collaboration Co-chair

Dr. Ishwar Prasad Sahu

Assistant Professor IGNT University, Amarkantak National Collaboration Co-chair

Dr. Yashwant Kumar Modi Assistant Professor (SG) Jaypee University, Guna National Collaboration Co-chair

Dr. Ashish Khaira

Assistant Professor S.A.T.I. Vidisha National Collaboration Co-chair

Dr. Suwarna Torgal Assistant Professor IET,Devi Ahilya University,Indore National Collaboration Co-chair

Dr. Anupma Agarwal Assistant Professor IPS College of Technology & Mangement, Gwalior Organizing Secretary

Organizing Committee

Dr. Keshav Rawat Assistant Professor Central University, Dharamshala Online Platform Management Co-chair

Ms. Neha Sharma Assistant Professor IPS College of Technology & Mangement, Gwalior Host

Mr. Gaurav Jain Assistant Professor IPS College of Technology & Mangement, Gwalior Member

Mr. Sushil Chaturvedi Assistant Professor IPS College of Technology & Mangement, Gwalior Online Platform Management Member

Ms. Pragya Sharma Associate Orange Business Services Host

Mr. Vineet Raj Singh Kushwah

Associate Professor IPS College of Technology & Mangement, Gwalior Website Management Co-chair

Mr. Prem Prakash Pandit

Assistant Professor IPS College of Technology & Mangement, Gwalior Member

Keynote Speaker

Dr. Nageswara Rao Posinasetti

Professor University of Northern Iowa, Cedar Falls, USA

Dr. Vijay Kumar Jain Professor (Retd)

Indian Institute of Technology Kanpur, India

Dr. Rohan Shirwaiker

Associate Professor North Carolina State University, USA Associate Director Functional Tissue Engineering Program, Comparative Medicine Institute, CMI, USA

Dr. Raghu Echempati Professor Department of Mechanical Engineering Kettering University, Flint, MI, USA

Dr. Anjali Awasthi

Professor Concordia University Research Chair (Tier–II) Concordia University, Montreal, CANADA

Session Chairs

Dr. Akshay Dvivedi, Indian Institute of Technology, Roorkee, IN Dr. Anil Yadav, Lakshmi Narain College of Technology, Bhopal, IN Dr. Avadesh K. Sharma, Rajkiya Engineering College, Mainpuri, IN Dr. Elammaran Jayamani, Swinburne University of Technology, Malaysia Dr. Ishwar Prasad Sahu, IGNT University, Amarkantak, IN Dr. Jyoti Vimal, Madhav Institute of Technology and Science, Gwalior, IN Dr. Karunendra Verma, Associate Professor, RAMA University, Kanpur, IN Dr. Manoj Narwariya, IPS College of Technology and Management, Gwalior, IN Dr. Nitesh Dixit, Ram Manohar Lohiya University, Ayodhya, IN Dr. R.K. Porwal, Shri Ramswaroop Memorial University, Barabanki, IN Dr. R. K. Shukla, ABES Engineering College, Ghaziabad, IN Mr. R. Prasad, Hindustan College of Science and Technology, Mathura, IN Dr. Rahul Singh Sikarwar, Vellore Institute of Technology, Vellore, IN Dr. Ravi Mandava, Maulana Azad National Institute of Technology, Bhopal, IN Dr. Ruby Chakraborty, HOYA Optical Corp. & Entrepreneur at Biena Tec, USA Dr. Saubhagya Kumar Panigrahi, Veer Surendra Sai University of Technology, Burla, IN Dr. Sanjay Mishra, Madan Mohan Malaviya University of Technology, Gorakhpur, IN Dr. Santosh Rane, Sardar Patel COE, Mumbai, IN Dr. Soon Kok Heng, Swinburne University of Technology, Malaysia Dr. Suwarna Torgal, IET, Devi Ahilya University, Indore, IN Dr. V. K. Dwivedi, Madan Mohan Malviya University of Technology, Gorakhpur, IN Dr. Vijay Gadakh, Amrutvahini College of Engineering, Sangamner, IN Dr. Yaswant Modi, Jaypee University of Engineering and Technology, Guna, IN

Paper Review Committee

Dr. Abhishek Jain, ShriRam Institute of Information Technology, Gwalior, IN Dr. Ajay Kumar, Indian Institute of Technology, Tirupati, IN Ms. Almas Siddiqui, Indian Institute of Science, Banglore, IN Dr. Amit K Jain, University of Cambridge Dr. Anurag Garg, IPS College of Technology and Management, Gwalior, IN Dr. Ashish Dixit, Amrapali Institute of Technology and Sciences, IN Dr. Ashish Khaira, Samrat Ashok Technological Institute, Vidisha, IN Mr. Ashutosh Bansal, Central Institute of Plastics Engineering and Technology, Lucknow, IN Dr. Atul Sharma, Vellore Institute of Technology, Vellore, IN Dr. Avadesh K. Sharma, Rajkiya Engineering College, Mainpuri, IN Ms. Bhawna Sahjwani, Sant Hirdaram Institute of Management, Bhopal, IN Dr. C S Malvi, Madhav Institute of Technology and Science, Gwalior, IN Dr. C. Venkata Siva Prasad, Vignana Bharathi Institute of Technology, IN Dr. Chandrakant Sonawane, Symbiosis Institute of Technology, Pune, IN Dr. Chitresh Nayak, Oriental Institute of Science and Technology, Bhopal, IN Dr. D. N. Naresh, Sawai Madhopur College of Engineering & Technology Sawai Madhopur, IN Dr. Debasmita Mishra, Veer Surendra Sai University of Technology, Burla, IN Dr. Devendra Singh, Ajay Kumar Garg Engineering College, Ghaziabad, IN Dr. Ishwar P Sahu, Indira Gandhi National Tribal University, Amarkantak, IN Dr. Jyoti Vimal, Madhav Institute of Technology and Science, Gwalior, IN Dr. Karunendra Verma, RAMA University, Kanpur, IN Dr. Keshav Rawat, Central University of Himachal Pradesh, Dharamshala, IN Dr. Khalid M Abdelghany, The Central Metallurgical Research and Development Institute CMRDI, Egypt Mr. Kushal Saxena, Rajkiya Engineering College, Mainpuri, IN Mr. Lingeshwaram Nagarathinam, KL University, IN Dr. Lingraj Dora, Veer Surendra Sai University of Technology, Burla, IN Dr. Manoj Kumar, ABES Engineering College, Ghaziabad, IN

Dr. Manoj Narwariya, IPS College of Technology & Management, Gwalior, IN

Paper Review Committee

Dr. Neelesh Kumar Sahu, Medi-Caps University, Indore, IN Dr. Neelima Shukla, S M S Govt. Model Science College, Gwalior, IN Dr. Noel Perera, Birmingham City University, UK Dr. Nupur Verma, Madhav Institute of Technology and Science, Gwalior, IN Mr. P Pachorkar, IES College of Technology, Bhopal, IN Dr. Padmanav Dash, Veer Surendra Sai University of Technology, Burla, IN Dr. Pankaj Kumar, Madhav Institute of Technology and Science, Gwalior, IN Dr. R S Jadoun, G B Pant University of Agriculture & Technology, Pant Nagar, IN Dr. Rahul Singh Sikarwar, Vellore Institute of Technology, Vellore, IN Mr. Rajeev Singh, Rajkiya Engineering College, Mainpuri, IN Dr. Rajendra K Shukla, ABES Engineering College, Ghaziabad, IN Dr. Rajesh Porwal, Shri Ramswaroop Memorial University, Barabanki, IN Mr. Rakesh Prasad, Hindustan College of Science & Technology, Mathura, IN Mr. Ram Kumar Agrawal, University of Technology, Jaipur, IN Dr. Ramesh C Prusty, Veer Surendra Sai University of Technology, Burla, IN Mr. Ranjeet P S Bhadoriya, IPS College of Technology and Management, Gwalior, IN Dr. Ravi K Dwivedi, Maulana Azad National Institute of Technology, Bhopal, IN Dr. Ravi K Mandava, Maulana Azad National Institute of Technology, Bhopal, IN Dr. Ruby Chakraborty, HOYA Optical Corp. & Entrepreneur at Biena Tec, USA Dr. Sachin K Gupta, Indian Institute of Technology Madras, IN Dr. Sanjay Mishra, Madan Mohan Malaviya University of Technology, Gorakhpur, IN Dr. Sanjeev Singh, Maharana Pratap College of Technology, Gwalior, IN Dr. Saubhagya Kumar Panigrahi, Veer Surendra Sai University of Technology, Burla, IN Dr. Shibendu Shekar Roy, National Institute of Technology, Durgapur, IN Dr. Shiv Kumar Sharma, ShriRam College of Engineering and Management, Morena, IN Dr. Sree Lakshmi, Koneru Lakshmaiah Education Foundation, Guntur, IN **Dr. Sudha K**, Government College of Engineering, Salem, IN Mr. Sudhir Sharma, IPS College of Technology & Management, Gwalior, IN Dr. Surendra Agrawal, ShriRam College of Engineering & Management, Morena, IN Dr. Tribeni Roy, Imperial College London, UK

Paper Review Committee

Mr. Vaibhav Shivhare, Madhav Institute of Technology and Science, Gwalior, IN
Dr. Vijay Gadakh, Amrutvahini College of Engineering Sangamner, IN
Dr. Vijay Verma, Bundelkhand Institute of Engineering and Technology, Jhansi, IN
Dr. Vikas Vithal Shinde, Vishwaniketan iMEET, Khalapur, IN
Mr. Vikrant Mishra, Rajkiya Engineering College, Mainpuri, IN
Dr. Yashwant Modi, Jaypee University of Engineering and Technology, Guna, IN
Mr. Yogendra Singh Rajpoot, Rajkiya Engineering College, Mainpuri, IN

International Conference on Advances in Materials, Mechanics, Mechatronics & Manufacturing (IC4M 2021)

IOP Conference Series Materials Science and Engineering

Programme Schedule

March 06, 2021 (Day 1)

	Programme Time/ Paper IDs		
Inaugural	function & Keynote Address-I	· · · · ·	
Speaker:	Dr. Nageswara Rao Posinasetti Professor University of Northen Iowa, USA	0.00 a m 10.20 a m	
Topic: Host:	Introduction to Circular Economy Ms. Neha Sharma Asst. Professor, IPSCTM, Gwalior, IN	9:00 a.m 10:20 a.m.	
Technical S	Session-I (Materials)		
I territeur .	Session T (Materials) Session Chairs 1. Dr. Rahul Singh Sikarwar, Associate Professor,	10:30 a.m 1:00 p.m.	
	 VIT Vellore, IN 2. Dr. Suwarna Torgal, Assistant Professor, IET,Devi Ahilya University,Indore, IN 2.Dr. R. Prasad, Asst. Professor, Hindustan College of Science and Technology, Mathura, IN 	012006, 8, 10, 17, 24, 27, 31, 39, 48, 54, 63,	
Technical S	Session-II (Mechatronics)		
	Session Chairs 1. Dr. Elammaran Jayamani, Discipline Leader, Swinburne University of Technology, Malaysia 2. Dr. Karunendra Verma, Associate Professor,	10:30 a.m 1:00 p.m.	
	 RAMA University, Kanpur, IN 3. Dr. Ishwar Prasad Sahu, Associate Professor, IGNT University, Amarkantak, IN 	012007, 11, 19, 32, 38, 43, 52, 53, 59, 72, 73, 74	
Keynote Ac	ddress-2		
Speaker:	Dr. V. K. Jain Professor (Retired)		

	Indian Institute of Technology Kanpur, IN	2.00 pm $3.00 pm$
Topic:	Micromachining: An Overview	2.00 pm - 3.00 pm
Host:	Dr. Ashish Khaira, Asst. Professor,	
	Samrat Ashok Technological Institue, Vidisha, IN	

Technical Session-III (Mechanics & Design)

Session Chair	
1. Dr. V.K. Dwivedi, Professor (T&P), Madan Mohan Malviya	3:00 pm - 4:15 pm
University of Technology, Gorakhpur, IN	
2. Dr. Avadesh K Sharma, Associate Professor, Rajkiya Eng	
College, Mainpuri, IN	012001, 3, 4, 77
3. Dr. Jyoti Vimal, Asst. Professor, MITS, Gwalior, IN	

Technical Session-IV (Manufacturing)	
Session Chair	
1. Dr. R.K. Shukla, Professor & Head, ABES Engineering	3.00 pm - 4.15 pm
College, Ghaziabad, IN	5.00 pm 4.15 pm
2. Dr. Vijay Gadakh, Associate Professor, Amrutvahani COE,	
Sangamner, IN	
3. Dr. Sanjay Mishra, Associate Professor, MMM University of	012002, 15, 16, 21, 26
Technology, Gorakhpur, IN	

Keynote Address-3

-		
Speaker:	Dr. Rohan Shirwaiker	
	Associate Professor, N C State University, USA	
	Associate Director, Functional Tissue Engineering Program,	4 20 5 20
	Comparative Medicine Institute (CMI), USA	4:30 pm - 5:30 pm
Topic:	Manufacturing of Tissues and Organs	
Host:	Dr. Madhavi Singh, Penn State College of Medicine, USA	

March 07, 2021 (Day 2)			
Programm	Programme Time		
Keynote A	ddress-4		
Speaker:	Dr. Raghu Echempati		
	Professor, Kettering University, USA		
Topic:	Study of Light Weight Materials and Their Applications	9:00 a.m 10:00 a.m.	
	Ms. Pragya Sharma		
Host	Associate, OrangeBusiness Services, IN		
Technical S	ession-V (Mechanics & Design)		
	Session Chairs		
	1 Dr SK Panigrahi	10:15 a.m 1:00 p.m.	
	Associate Professor VSSUT Rurla IN		
	2 Dr Manoi Narwariya	012005, 14, 25, 35, 42, 51,	
	Associate Professor, IPS CTM, Gwalior, IN	55, 57, 58	
Technical S	ession-VI (Mechanics & Design)	1	
	Session Chairs		
	1. Dr. Soon KokHeng, Sr. Faculty	10:15 a.m 1:00 p.m.	
	Swinburne University of Technology, Malaysia		
	2. Dr. Santosh Rane, Dean, Sardar Patel COE, Mumbai, IN		
	3. Dr. Ravi Mandawa, Asst. Protessor, Maulana Azad National	012029, 40, 44, 50, 66, 70	
	Institute of Technology, Bhopal, IN		
Kevnote Ad	ldress-5		
Speaker:	Dr. Aniali Awasthi		
~r · · ·	Professor & Concordia University Research Chair (Tier–II)		
Topic:	Concordia University, Montreal, CANADA		
r -	Industry 4.0 and Digital Supply Chain Management	2:00 pm - 3:00 pm	
Host:	Ms. Pragva Sharma		
	Associate, Orange Business Services, IN		

Technical Session-VII (Materials)		
Session Chair 1. Dr. Anil Yadav, Professor, LNCT, Bhopal, IN 2. Dr. Ruby Chakraborty, Scientist	3:00 pm - 5:30 pm	
HOYA Optical Corp. & Entrepreneur at Biena Tec, USA 3. Dr. Nitesh Dixit, Associate Professor, Ram Manohar Lohiya University, Ayodhya, IN	012013, 18, 22, 33, 37, 47, 64, 65, 68, 71, 76	
Technical Session VIII (Manufacturing)		
Session Chair		
1. Dr. Akshay Dwivedi , Associate Professor Indian Institute of Technology, Roorkee, IN	3:00 pm - 5:30 pm	
 2. Dr. K.K. Porwal, Associate Professor Shri Ramswaroop Memorial University, Barabanki, IN 3. Dr. Yaswant Modi Associate Professor, Jaypee, Guna, IN 	012012, 28, 34, 49, 56, 60, 61, 62, 67, 69	
Session Chairs		
1. Dr. S.K. Panigrahi,	6:00 pm - 8:00 pm	
Associate Professor, VSSUT, Burla, IN 2. Dr. Premanand S Chauhan, Professor & Principal, IPS College of Technology & Management, Gwalior, IN	012009, 20, 23, 30, 36, 41, 45, 46, 75	

Program Schedule March 06, 2021

Session: I (March 06, 2021)

09:15 am- 10:15 am	Keynote Address 1
Topic of the Keynote	Introduction to Circular Economy
Keynote Speaker	Dr. Nageswara Rao Posinasetti Professor University of Northern Iowa, Cedar Falls, USA

Biography of Speaker: He is currently working as an Professor in the Department of Technology, University of Northern Iowa, Cedar Falls, USA. His active areas of teaching and research are Manufacturing Engineering and Design Engineering. He has received the "Distinguished Scholar" award from University of Northern Iowa for the year 2017-2018. He has authored a number of textbooks on Manufacturing Technology, CAD/CAM and Metal Casting, published by McGraw Hill India and American Foundry Society. He has wide interaction with the industry through the process of consultancy work and conducting continuing education programs on various aspects related to modern manufacturing. He has also published over 260 research papers in international conferences and journals. He is on the editorial boards of International Journal of Precision Technology, International Journal of Mechanical Engineering, Efficient Manufacturing, International Journal on Global Research in Science and Technology, and West Indian Journal of Engineering.

Abstract: Humans have been consuming resources taken from Mother Earth at an unprecedented rate. The unregulated and excessive consumption of natural resources combined with the ever increasing use of fossil fuels for energy generation is not sustainable for healthy planet. As the window of opportunity available for correcting this perilous journey taken by the mankind towards environment is shrinking every day. As a result, Sustainability has become a very important issue in the world today and all the countries are trying their best to regulate the growth in a sustainable way. Natural progression from sustainability to circular economy is logical and is the most important part in the world economy today. It is therefore necessary to establish methods of circular economy at the earliest possible time in all walks of life to improve the environment for all on this earth.

The circular economy is a concept in which growth and prosperity are decoupled from natural resource consumption and ecosystem degradation. By refraining from throwing away used products, components and materials, instead re-routing them into the right value chains, it is possible to create a society with a healthy economy, inspired on and in balance with nature.

It is necessary to understand the various elements that form the circular economy both from the bio sphere and technical sphere. As manufacturing engineers it is important to concentrate on the technical sphere to understand the reuse, remanufacture and recycle to reduce the material consumption to the extent possible. It is, essentially, an ecological economy that follows the principles of *"reducing resource use, reusing, and recycling"*.

The various paradigms to achieve circular economy need to be examined by the practitioners as well as government. This paper presents different aspects of circular economy and methods that could be utilized for achieving the highest benefit possible. It provides a broad idea of circular economy with the details of tools and methodologies that could be applied in the manufacturing sector. The tools such as LCA are to be applied to the various products and processes that are being used today so that they can be utilized to achieve circularity along with the various R's similar to the 3R's. The aim should be to create a system that allows for the long life, optimal reuse, refurbishment, remanufacturing and recycling of products and materials that would lead to circularity.

Session: II (March 06, 2021)

02:00 pm- 03:00 pm	Keynote Address 2		
Topic of the Keynote	Micromachining: An Overview		
Keynote Speaker	Dr. Vijay Kumar Jain		
	Professor (Retd)		
	Indian Institute of Technology Kanpur, India		
Biography of Speaker	He did his B.Tech. from M.A.C.T. Bhopal (Vikram University, Ujjain),		
and M. Tech. and Ph.D.	from University of Roorkee (now, I.I.T. Roorkee). He has about 44 years		
of teaching and research	ch experience. He has served as a Visiting Professor at University of		
California at Berkeley	(USA) and University of Nebraska at Lincoln (USA). He retired as a		
Professor from Indian In	nstitute of Technology Kanpur after serving for thirty three years. Dr. Jain		
has won three gold me	dals, two silver medals and one best paper award as recognition to his		
research work. He is Ec	litor-in-chief of three International Journals and Associate Editor of Int J.		
Engineering Manufacture and J. Machining Science and Technology. In recognition to the research			
work of Dr. Jain, he	work of Dr. Jain, he has been opted as a member of the editorial board of more than ten		
International Journals. He has also worked as a GUEST-EDITOR for more than ten special issues			
on TQM, CAPP, Advanced Machining processes, micromanufacturing, and micro fabrication. He			
has more than 300 publications to his credit. He has written and edited eight books. He has guided			
fifteen Ph.D. students and around one hundred M. Tech. / M. E. students. Dr. Jain has various			
research areas of interest, viz. advanced machining techniques (ECM, EDM, AFM, MAF, MRAF,			
and others), machining of advanced engineering materials, shear strain acceleration phenomenon in			
metal cutting, computer aided manufacturing, and CAPP.			

Session: II (March 06, 2021)

04:30 pm- 05:30 pm	Keynote Address 3	
Topic of the Keynote	Manufacturing of Tissues and Organs	
Keynote Speaker	Dr. Rohan Shirwaiker	
	Associate Professor, North Carolina State University, US	
	Associate Director, Functional Tissue Engineering Program,	
	Comparative Medicine Institute, CMI, USA	
Biography of Speaker	: He is an Associate Professor of Industrial & Systems Engineering and	
Biomedical Engineering	, and Associate Director of the Comparative Medicine Institute at North	
Carolina State Universit	ty located in Raleigh, US. His research focuses on the development and	
optimization of bio ma	anufacturing processes and quality monitoring techniques to create and	
evaluate tissue and or	gan substitutes for a variety of medical applications. Shirwaiker has	
coauthored over 100jour	rnal and conference publication shas received several distinctions including	
the US National Science Foundation's CAREER Award, SME Outstanding Young Manufacturing		
Engineer Award, and IISE Manufacturing & Design Outstanding Young Investigator Award. He		
currently serves on different boards and committees for professional organizations including		
ASME, ASTM, IISE and SME.		
Abstract: Medical implants play an important role in improving the quality of life of patients		
affected by injuries and diseases. Whereas implants are traditionally made of bio inert metals and		
polymers, recent advances in computer aided engineering and bio manufacturing enable us to		
design and fabricate patient-specific biological substitutes that can mimic the characteristics of		
native tissues and organs using living cells and multi-functional biomaterials. This talk will provide		
an overview of tissue engineering and bio manufacturing technologies, with examples of		
applications in orthopaedics. Challenges and opportunities in the scale-up and translation of these		
technologies from research labs to clinics will also be discussed.		

INTERNATIONAL CONFERENCE

Advances in Materials, Mechanics, Mechatronics and Manufacturing

March 6-7, 2021/India

Program Schedule March 07, 2021

09:00 am- 10:00am	Keynote Address 4		
Topic of the Keynote	Study of Lightweight Materials and their Applications		
Keynote Speaker	Dr. Raghu Echempati		
	Professor		
	Department of Mechanical Engineering		
	Kettering University, Flint, MI, USA		
Biography of Speaker:	He is a Professor in the Department of Mechanical Engineering, Kettering		
University. His researc	h areas included Kinematics, Dynamics and Vibrations of Machinery,		
Mechanical Engineering	g Design, Computer Aided Engineering (Solid Modeling, Assembly and		
Finite Element Analysis	s), and Metal Forming Simulation. Prior to this appointment, he worked		
with I.I.T. (Delhi), 7	with I.I.T. (Delhi), The Ohio State University, Washington State University, Michigan		
Technological University, and University of Mississippi. Dr. Echempati is involved in several			
applied research and consulting projects, including a research study under the Bosch-			
Ketteringprofessorship. He also worked at General Motors as a Faculty Intern in the Die Design			
and Forming Analysis division to understand math-modeling for metal forming simulation. Dr.			
Echempati delivered several invited lectures and conducted workshops on CAE			
in Australia, Brazil, India and S. Korea. Dr. Echempati is a member of the American Society of			
Mechanical Engineering (ASME), Society of Automotive Engineers (SAE), and the American			
Society of Engineering	Education (ASEE). He was named an ASME Fellow, which is the highest		
recognition that can be a	attained by any ASME member. He has also received the McFarland award		
from SAE for his sustain	ned contributions to SAE.		
Abstract: Weight reduction or lightweighting in mobility industries has been an important factor in			

Abstract: Weight reduction or lightweighting in mobility industries has been an important factor in order to meet the functional requirements and other regulations of a particular country. Mass reduction versus vehicle size, increased strength, safety and stiffness have been challenging to balance in real life due to other competing functional performance particularly for automotive applications such as crash performance, aesthetics, corrosion, cost, reliability and joining methodologies to mention a few. Steel and its alloys have been, and still will be, the dominant material used in mobility industries. However, use of multi-material technologies with aluminium, magnesium, plastics and nanocomposites, is drawing the attention of many automotive and aerospace industrial sectors.

In this keynote talk, a few of the above-mentioned issues and how they can be addressed using lightweighting materials and their technologies will be broadly covered. Some details about using different materials for the body in white (BIW) components and the role of nanocomposite materials will be discussed. Case studies developed by industry experts will be discussed.

Session: II (March 07, 2021)

02:00 pm- 03:30pm	Keynote Address 5	
Topic of the Keynote	Industry 4.0 and Digital Supply Chain Management	
Keynote Speaker	Dr. Anjali Awasthi	
	Professor & Concordia University Research Chair (Tier-II)	
	Concordia University, Montreal, CANADA	
Biography of Speaker:	She is a Full Professor and Concordia University Research Chair (Tier-II)	
in Connected Sustainab	le Mobility Systems at the Concordia Institute for Information Systems	
Engineering, Concordia	University in Montreal, Canada. Her areas of research are modeling and	
simulation, data mining, Information Technology and decision making, sustainable logistics		
planning, quality assurance in supply chain management and sustainable supply chain management.		
She is currently serving as the Education Chair for CORS (Canadian Operations Research Society),		
is an associate of LSRC (Loyola Sustainability Research Center), and a regular member of		
CIRRELT (Centre Interuniversitaire de Recherchesur les Reseauxd'Entreprise, la Logistique et le		
Transport). She is also the recipient of Eldon Gunn service award (CORS 2018, Halifax) and IEOM		
Special Recognition Award (4th North American Conference on Industrial Engineering and		
Operations Management, Toronto, 2019).		

Abstract: Industry 4.0 is the digitization of a company's physical assets and the company's integration into digital ecosystems with its value chain partners, from suppliers to customers. It uses smart technology and the use of real-time data to increase flexibility, customization, efficiency and productivity, and to reduce time, costs and innovation cycles. Due to disruptive technologies, the digitization of processes, and an explosive growth in data, Industry 4.0 will have a major impact on the way products are designed, manufactured, assembled, shipped and repaired, and on the people that have to adapt to these changes. Industry 4.0 focuses on nine technologies: autonomous robots, system integration, the internet of things (IoT), simulation, additive manufacturing, cloud computing, augmented reality, big data, and cybersecurity. Through these technologies, new supply chain paradigms can be achieved, and production and related logistics processes will change. The proposed talk will focus on digital supply chains, with the objective of developing seamless, end-to-end, performance tracability across multiple tiers by leveraging the advantage of Industry 4.0 technologies. Four key decisions will be addressed namely inventory management, quality management, product lifecycle management, and cross-disciplinary workforce planning. Practical examples will be provided.

Paper ID	012001
Title	Design and development of modified cold compaction die for fabrication of nickel- titanium composite
Authors	Rajeev Singh, Avadesh K Sharma and Ajay K Sharma
Abstract: Generally, nickel-titanium (NiTi) composites are prepared by powder metallurgy process in which the design and shape of compaction die can significantly affect the features of the final products. The formation of circumferential cracks and higher porosity are the major issues of this process. Therefore, this work is an effort to design and fabricate a modified cold compaction die by incorporate one additional part named as liner that prepared the NiTi composite without	
circumferential cracks. The work includes design consideration, drawing and processes involved in the fabrication of die. The die design was analyzed by SOLIDWORKS software in a simulated environment, and further tested experimentally by preparing the composite sample at 140 kN compaction load using universal testing machine. The results showed that a crack-free dense NiTi composite was successfully fabricated by this modified die. The densification, compressive strength	
and Rockwell hardness of NiTi composite fabricated using this die were achieved upto 86.7 %,	

108.29 MPa and 64.2 HRC. **Keywords:** Composite, cold compaction, powder metallurgy, density, mechanical properties.

Paper ID	012002
Title	Automated paste preparation machine
Authors	Mohd Almasood, Samriddhi Singh, Yogendra Singh Rajpoot and Deepak kumar
Abstract: Ayurveda industry is one of the golden industries in ancient India which over the period	
had declined is witnessing a new surge up; this paper describes an automated approach for	
developing automated pasts preparation machines for the health sector and Avurveda industry	
Automated maste preparation machine models are menously on the basis of neguinements and then	
Automated paste preparation machine models are prepared on the basis of requirements and then	
tested and finally go into the manufacturing stage. This paper basically describes the methodology of	
preparation of machine models. In these automated paste preparation machine models, we use cam	
follower mechanism for the timed opening of valves to ensure the correct amount of ingredients to be	
instilled into the bowl Control of opening and closing of values through cam follower mechanism is	
achieved by the programming of gear motor with the help of Arduine Uno. An experimental case	
achieved by the programming of gear motor with the help of Ardumo Ono. An experimental case	
study is presented to show advantages, which include a verified reduction in model development time	
and improved modeling consistency and quality	
Keywords: Arduino Uno, cam follower, L293D motor driver, LCD module.	

Paper ID	012003
Title	Structural health monitoring of splice joint in a steel beam
Authors	Aastha and R.R. Singh

Abstract: Now-a-days steel sections are extensively used in various constructions because of its lesser erection time and higher reliability. These members are connected either by welding or bolts. As the time goes on the structure degrades due to various reasons. In our study degradation of joints with bolted connections is presented. In reality, joints are damaged frequently when compared to the other parts of the structure. As bridges are generally of long spans splicing is done to ensure the continuity of the spans and this splicing is done with the help of welding or bolts. Loosening of bolts is the most common damage which occurs in bolts and this makes the joint act like a semi-rigid joint. We have considered a bridge model consisting of two beams connected by splicing with the help of bolts and this entire modelling is done in ABAQUS 6.13. Our intention to study the behaviour of the joint in both damaged and undamaged case. Loosening of bolts is considered as damage and deflection of the joint is considered as the extent of damage. We have performed static analysis on the model. Theoretical validation is also done by developing elemental stiffness matrix with semi-rigid connections using fixity factors.

Keywords: Splice joint, Bolts, ABAQUS 6.13, Static analysis, Stiffness matrix.

Paper ID	012004	
Title	Feature curve extraction from data points	
Authors	Sushant Gautam and Vandana Agrawal	
Abstract: In	the present work, study is done for the extraction of feature curves from data points	
lying on the	surface of object or model. Here, the reconstruction of feature curves is proposed by	
intersection of plane pairs. These plane pairs approximate the adjacent regions of the feature. Feature		
of the object may be its edges, corners, holes, sudden jerks, slits etc. Points cloud is generated from		
the snapshots of the object taken from various viewing angles. Clustering work is extended from K-		
means cluster	ing to combined K-means and Normal (attribute) approach based clustering as it utilizes	
the benefits of both K-means and attribute based method and segmented the data points so that a		
cluster is rep	resented with similar normal vector. Planes are fitted to all clusters based on Least	
Square Plane	Fitting (LSPF) method and line segments from their intersection are identified,	
highlighted an	nd collected as feature lines i.e. edges and corners based on developed algorithm.	
Keywords: I	Points cloud, Sharp features, Feature curve, Developable surface, Clustering.	

Paper ID	012005
Title	Seismic soil structure interaction of reinforced concrete frame building supported on foundations
Authors	I Bhuvana Rekha, Lingeshwaran N, Sunny Agarwal and Sateesh Madavarapu
Abstract: So	bil Structure Interaction (SSI) determines the response of structures during seismic
activity. An e	engineering review committee deals only with the study of soil structure interaction as
compared to	free motion, gives an appreciable impact on the basement motion. This article
investigates the influence of soil structure interaction on RC frame building with seismic excitations.	
By taking different cases like 5, 10, 15, 20 storey of varying soil types are type I, type II and type III,	
different four	ndation types are isolated, combined, mat, pile. The entire foundation-soil-structure
system is mo	delled and analyzed in a finite element based SAP2000 Software, to study the stress on
soil and framed structure in the presence of SSI. Finally, a comparative study between with and	
without SSI	to reinforced concrete framed structure is done. The study shows that SSI effects are
higher than re	egular approach if we include the SSI effects in our analysis and design of structure to
get a safety de	esign.
Keywords: D	ynamic analysis, Fixed base, Soil structure interaction, SAP 2000.

Paper ID	012006
Title	A review paper on materials used for manufacturing of alloy wheels
Authors	A Naim, R Kumar and S Bhatia
Abstract: In this review paper we have done a detailed study on the different types of material that	
we can use for the manufacturing of alloy wheels in order to meet the need of the market. During this	
project we studied the fatigue analysis of aluminum, magnesium, and titanium alloy wheels on the	
basis of their deformation under load, maximum shear stress of materials, and equivalent stress of the	
materials. Also we studied the different methods of production of alloy wheels.	
Keywords: A	Nov Wheels, Fatigue Analysis, Production of Alloy Wheels, Stress Analysis

Paper ID	012007
Title	Development of a bi- directional multi- input multi- output predictive model for the fused deposition modelling process using co-active adaptive neuro-fuzzy inference system
Authors	Ananda Rabi Dhar, Dhrubajyoti Gupta and Shibendu Shekhar Roy
Abstract: If parameters of intelligent in between the fused depose regression ed using six inp road width a and three re modulus, ea Similarly, th the backwar algorithm ha actual experi backward ma	In the automated manufacturing industries, modelling and prediction of the process of additive manufacturing plays an important role. This paper proposes a computationally method using coactive-adaptive neuro-fuzzy inference system to establish relationships process parameters and the responses, in both forward and backward directions, for the ition modelling process. Experimental data have been statistically analyzed and puations have been generated to produce large training samples. The model has been built but process parameters, viz. layer thickness, air distance, build inclination, raster angle, and number of contours each with non-linear Gaussian membership function distributions, sponses, which are: build time, feedstock material consumption and dynamic flexural ch with linear membership function distributions for the forward-directed mapping. ree inputs and six outputs from the same training data set have been used to formulate d-directed inference model. The parametric study for the used back propagation s been conducted and validation has been accomplished with the optimal settings using mental data. Additive manufacturing, fused deposition modelling, C-ANFIS, forward mapping, apping.

Paper ID	012008
Title	Investigation of electric properties of flax reinforced polypropylene/strontium titanate
	composite for multilayer dielectric applications
Authors	Hari Prashanth PVS, Elammaran Jayamani and Kok Heng Soon
Abstract: E	ectrical properties such as dielectric constant, dissipation factor, capacitance and
conductivity a	are some of the properties that are required to be investigated when a novel composite is
fabricated. Th	he aim of this research is to achieve a low dielectric constant (less than 4.2), lowered
dissipation fa	ctor, lowered conductivity by fabricating a novel natural fiber reinforced polymer
composite ar	id investigating their properties. In this research, polypropylene with 14 wt% of
strontium tita	nate, 8 wt% of treated flax fibers was fabricated using compression molding and tested
for their diele	ectric and conductive properties. The capacitance and dielectric constant was found be
significantly l	higher (43 percent) than that of pure PP or PP-flax and a gradual decrease was observed
as the frequen	ncy was increased. The dissipation factor and conductivity was found to be higher for
pure PP how	ever, the full composite showed moderate conductivity showing that delays in charge
losses could o	occur making it an ideal composite for dielectric multilayer applications.
Keywords: N	Natural fiber reinforced polymer composites, flax fibers, ceramic, dielectric constant,
conductivity.	

Paper ID	012009
Title	Comparison of a decade's data between LST and NDVI data for agricultural drought analysis in Rayalaseema region, AP, India
Authors	Gayathry Damarla and Naga Chaitanya Kavuri

Abstract: Drought is an extreme weather condition that disturbs agricultural production by raising the temperatures and altering precipitation patterns. As agriculture in India heavily depends on monsoon, any changes in these patterns will severely affects its agricultural economy. Rayalaseema is one of such regions which was hit by sever draught conditions in past few decades. The region depends on the traditional agricultural economy; thus, not only production but also the life of the common man is influenced by the impact of drought on agriculture. The purpose of this study is to investigate vegetation stress in the Rayalaseema region with the help of normalised difference vegetation index (NDVI) values and land surface temperature (LST) for the years 2011 and 2019. To measure both NDVI and LST, satellite data is used. A clear interdependency between LST and NDVI was observed and it was found to be a negative correlation between them. The correlation values for 2011 and 2019 between LST and NDVI were found to be -0.44577, -0.80447 respectively. The influence of rain fall data was also discussed in the study to explain the increase in NDVI values during the last quarter of 2019.

Keywords: LST, NDVI, Agricultural Drought, Rayalaseema.

Paper ID	012010
Title	Discussion and analysis of different in-situ methods for fabrication of Aluminium-
	TiB2 composite.
Authors	Ruchi Pathak, Pritha Sanbigrahi and Rajeev Singh
Abstract: In	this study, different in-situ phase development techniques in the aluminium matrix are
analyzed based on results obtained by using these methods. Microstructural and mechanical	
characteristics	s of aluminium-matrix composites reinforced by in situ titanium diboride (TiB2) have
been analyze	d in this paper. During the study, it is found that using in-situ methods for phase
development	in aluminium based composites is more appropriate than other ex-situ methods. The
interfaces bet	ween titanium diboride (TiB2) reinforcement and aluminium (Al) matrix are clean, and
enhanced med	chanical characteristics can be achieved.
Keywords: In	n-situ phase, TiB2 Phase, Aluminum matrix.

Paper ID	012011	
Title	Study and development of searching casualty and detecting fire by rescue robot	
Authors	Sandeep Yadav, Rituraj Raghuvanshi, Avi Bhadviya, Rahul Sonare, Satyam Paliwal	
	and Vikas Kashiv	
Abstract: The project titled study and development of searching casualty and detection of fire by		
rescue robot	is associated with new equipment to complete the task and to respond in hazards	
situation. Search and rescue robots are developed for a certain purpose that humans can't perform.		
Our objective is to design, construct, and develop a robot to use in emergencies that will be able to		
perform the search and rescue operation. Collapsed buildings are the most unstable place toper form		
search and rescue mission by human where the weight and size limits the rescuer movements. The		
robot is designed to locate injured victims and life triangle in debris, to create a map of the disaster		
area and to collect the necessary information needed by digging and support robots in order to the		
database cent	er.	

Keywords: Rescue, robot, victims, emergencies, rescuer.

Paper ID	012012
Title	Optimization and fabrication of pure poly lactic acid (PLA) using hot press compression moulding
Authors	M J Kamran, E Jayamani, K H Soon and Y C Wong
Abstract: Bio	odegradable poly lactic acid (PLA) samples were optimized and fabricated for flexural,
tensile, hardn (ASTM). In o pressing comp available rega molding. Ho compression	ess, and dielectric testing, according to the American Society for Testing Materials order to achieve the highest value of tensile strength, flexural strength, and hardness, hot pression molding was utilized to optimize PLA. Furthermore, not enough research was arding the preparation of PLA samples or composites using hot press compression wever, different magnitudes such as processing temperature, processing pressure, time, and cooling/resting time played huge roles. Each of these magnitudes was
samples were produced using the optimized method. These samples were then tested for tensile	
strength, whi	ch was 2.2 Mpa, flexural strength, 7.6 Mpa, Rockwell hardness C scale, 59, and
dielectric con	nstant/loss. The highest dielectric constant value achieved was 1.07810 at 1kHz
frequency, an	d the highest amount of dielectric loss was 0.14910 at 2MHz frequency.
Keywords: C	ptimization, Fabrication, Hot press, Compression molding, Poly Lactic acid.

Paper ID	012013
Title	Prediction of performance parameters of a four stroke diesel engine experimented with
	blends of vegetable oil biodiesel
Authors	Deepali Bharti, Pushpdant Jain, Bhupendra Koshti and Rajesh Nag
Abstract: Fo	ossil fuel consumption is increasing in a massive amount due to its applications in
various sector	rs. Moreover, use of such fuels creating harmful fumes and gases, which in turn creating
an impact o	n the environment. To reduce the impact on the environment, researchers are
continuously	trying to research and propose various alternative fuels. In the present work, the
Biodiesel was	s prepared from waste vegetable oil and used as a fuel in combustion ignition engine.
The performa	ance a four-stroke, single-cylinder, water-cooled, combustion ignition diesel Engine
connected to	a dynamometer checked with prepared Biodiesel. A mixture of waste vegetable oil with
pure diesel is	mixed with different proportions of blends such as 10%, 20% and 30% to conduct the
experiments.	Various experiments with different conditions were considered to identify the effect of
prepared Bio	diesel blends. The experiment results showed that among all blends of Biodiesel, the
20% blend of	Biodiesel had given the best results for maximum considered parameters. Such as at
highest load of	of 15 kg, the Brake thermal efficiency obtained maximum as 22.45%, 21.8%, 19.8 and
16.6% for 2	0%, 10%, pure diesel and 30% blend of Biodiesel. It can be interred from the
experimental	investigation suggests that the blended Biodiesel may be used as an alternative fuel in a
single-cylinde	er four-stroke diesel engine without any modification in the existing engine. The
obtained exp	erimental results may be further utilised to perform the various analysis to enhance
engine workin	ng conditions.
Keywords: (. I. engine, Internal Combustion Engine, Waste Vegetable Oil, Performance Parameter,

Biodiesel.

D ID	010014
Paper ID	012014
Title	Experimental and analytical investigation on high performance concrete-filled steel
	tube stub columns under axial loading
Authors	Harini B, Lingeshwaran N and Siva kishore I
Abstract: Th	ere has been an enormous improvement in the construction field in recent few decades
among these;	construction and material innovation are quite prominent. Concrete - steel composite
part is one r	ising advances as perhaps the fastest technique for development. CFST stands for
composite co	lumn, which consists of a steel tube filled with concrete. Experimental and theoretical
work on hig	h-performance concrete-filled steel tube stub columns under axial compression is
explored in this paper. The parameters included in this study are thickness, the diameter of stainless	
steel tubes,	mix design of high performance concrete & ultimate load-carrying capacity. Six
composite stu	ib columns are cast and tested. The design formulas of CFST under axial loading are
predicted usin	ng EUROCODE 4, ACI 318-95, AS 3600 & AS 4100. The finite element modeling of
this composite	e column is done by using ABAQUS software.
Keywords: A	xial load, composite stub column, confinement of concrete, conventional concrete, high
performance of	concrete.

Paper ID	012015
Title	A review on multi-nozzle electro hydrodynamic inkjet printing system for MEMS applications
Authors	Adrija Biswas and Shibendu Shekhar Roy
Abstract: Ne	w microproducts require to utilize the diversity of materials and have complicated three
dimensional	(3D) microstructures with high aspect ratios. This ability to fabricate geometrically
complicated	3D microstructures provides some additional profits to the additive manufacturing
systems over	traditional methods. Among the enormous variety of micro-products, the major kinds
are micro ele	ctromechanical systems (MEMS), micro-opto-electro-mechanical systems (MOEMS),
and microele	ctronic products and micro-optical electronics systems (MOES) depending on the
mixtures of j	product usefulness and operation fundamentals. Electro hydrodynamic (EHD)-inkjet
printing is a n	ovel high resolution inkjet printing technology with the advantages of being a maskless,
non-contact, o	direct-write and additive process. Its printing resolution exceeds by about two orders of
magnitude co	mpared to the conventional inkjet printing systems. It is used in the field of micro/nano
manufacturing	g for patterning of large class of materials on a variety of substrates with the options to
use either D	rop-On-Demand (D-O-D) or continuous mode. It is considered to be a promising
alternative to	piezoelectric and thermal based inkjet printing techniques because of its unique feature
of generating	very small jet or droplets as compared to the nozzle orifice. Various advantages in fine
patterning are	offered by EHD inkjet printing processes, but the low production speed of EHD inkjet
printing is a	severe drawback that has hampered its possible widespread applications in electronic
industry. To c	overcome this limitation, the direct printing of colloidal solutions with the help of multi-
nozzle EHD 1	nkjet printing process is used. This review gives a brief account of multi-nozzle electro
hydrodynamic	c inkjet printing of colloidal solutions for its application in MEMS
Keywords: E	lectrohydrodynamic inkjet, MEMS, Multi-nozzle.

Paper ID	012016
Title	Additive manufacturing of multi-functional biomaterials for bioimplants: a review
Authors	Shubhadip Paul, AnanyaNath and Shibendu Shekhar Roy
Abstract: Ac	lditive manufacturing (AM) has been emerged recently as a promising technique to
manufacture	biomaterials for bioimplants creating a high impact in the field of medical science and
research. AN	I technologies facilitates fabrication of the micro- as well as macro architectural
framework o	f orthopaedic bioimplants both internally and externally with higher precision and
flexibility. Th	e topological as well as geometrical porous nature of metallic biomaterials by means of
controlled AN	A processes for fabrication of bioimplants can be adapted with high precision, leading to
the upgradation	on of mechanical properties for bone-mimicking with improved biodegradation features.
The increasin	g demand for the application of multifunctional biomaterials to manufacture metallic
bioimplants a	is substitute of bone confronts the current additive manufacturing technologies. In this
paper, recent	technological advancement in the manufacturing of Ti-, Mg- and Fe-based biomaterials
utilizing mult	i-material AM technologies is being reviewed for identifying the knowledge gaps and
come up with	h the directions of further researches leading to the progress of multi-material based
additive man	ufacturing technologies to fabricate metallic bioimplants by virtue of multi-functional
biomaterials.	

Keywords: Additive Manufacturing, Bioimplants, Multi-functional Biomaterials.

Paper ID	012017
Title	Effect of parametric study on microstructure during FSW process
Authors	Kupsingh Kandir, Pragyan Paramita Mohanty and Manish Kumar Swain
Abstract: Th	e work focuses on the improvement of strength-weldability combination in Friction Stir
Welding (FSV	W) joint of 7075 and 6061 Aluminium Alloys. Although Al-6061 and Al-7075 both are
heat treatable	but they are having somewhat different mechanical properties. The 7075-T6 has more
tensile streng	th and hardness than that of 6061-T6. The lower hardness of 6061-T6 allow it to weld
easily wherea	s 7075 prone to cracking during welding. Owing with the result that FSW could play an
important rol	e to improve the mechanical properties as well as the weldability, microstructure of
cross section	as well as the mechanical properties of welded section was characterized. The welds
were produce	d by using three rotational speed and three feed. It was revealed that the tensile strength
of the joint (1	53.13 MPa) became very less in comparison to the base metal and it has been decreased
again when	the rotational speed decreases from 700rpm and 15mm/sec to 2000rpm and
25mm/min.Tl	he findings such as tensile strength as well as the fracture revealed that mechanical
properties and	the microstructure of welding are not desirable for any structural application.
Keywords: F	riction Stir Welding, Microstructure, Crack, Material Properties, rotational speed, feed.

Paper ID	012018
Title	Review on advance tubular receivers for central solar tower system
Authors	Kaustubh Kulkarni, Sanjay Havaldar and Nabharun Bhattacharya
Abstract: The energy. Requi- able to abso- performance in in mechanical and various he concentrated offers superior selection of st presented. Ex- tubular geomedifferent aspe- testing facilit	is review focused on central tubular receiver modelling to obtain concentrated solar red specifications involved with efficient low cost receiver with suitable material which rb concentrated solar radiations. This type of advance receivers shows excellent in the commercial and domestic applications. Review shows compiles literature engaged l and thermal modelling of receiver. Also highlighted on various geometries, tube sizes eat transfer fluids and their effect on overall performance of receiver. Recently authors on CFD simulations of different kind of receiver and put forth advanced design which or flexibility and accuracy also explains stresses generated in the tube of receiver. The cress theory is impacting on the mechanical life of the receiver with different approaches tensive technical analysis is investigated on different receivers for internal and external netry. Effect of heat transfer for different geometry is also observed. In this paper cts discussed thoroughly like receiver design, Numerical simulation, outdoor and indoor ies, thermal efficiency and desired outlet temperature, benefits, future challenges, and
rescaren need	

Keywords: Concentrating solar power, Tubular receiver, Cavity, HTF, Particle receiver.

Paper ID	012019
Title	Global system for mobile communication (GSM) monitoring in industries using
	arduinouno
Authons	Sandeep Yadav, Rituraj Raghuvanshi, Gaurav Soni, Lokesh Bangali and Shishank
Authors	Singh Bundela
Abstract: Th	e scope of our project is to notify the owner of the premises, the fire department and
authority imm	nediately after the sensors detect any fire or gas leakage in the property. The notification
is sent throug	h Short Message Services (SMS). The problem solved by our system is to have a quick
automated wa	arning alert to the fire department, the owner of the premises and authorized person to
reduce the losses. In case of fire and gases release, a buzzer will get activated and a fast-automated	
alert notificat	ion will be sent via SMS. The path to the development of the automation system at
home and in industry is almost the same these days. In this paper, we have tried to raise these	
standards by incorporating new design techniques and building a low-cost home with automated	
security syste	ems. Everyone wants to be safe as much as possible. The easy connection simple to
understand w	ill help every user to use the wireless system for security using the sensors at industries.
Keywords: C	Bas, smoke, temperature detector.

Paper ID	012020	
Title	Experimental study on mechanical properties of polypropylene fiber reinforced	
	concrete with silica fume	
Authors	Aravind Sai Yandrapati and M. Anil Kumar	
Abstract: In	this research, the mechanical properties of polypropylene and silica fume are examined	
with the 0.40	% water-cement ratio of M40 grade concrete. The synthetic polypropylene fibers of	
length 12mm	short fibers. in this study, the polypropylene fibers are used up to 0.3% (0%, 0.1%,	
0.2%, 0.3%).	And the silica fume is being utilized as a substitute for cement with a 4% mass of	
cement in all	the mix proportions. The addition of silica fume to the cementitious matrix strengthened	
fiber scatterin	ng, resulting in a substantial decrease in the absorbency of the polypropylene fiber	
reinforced co	ncrete (PPFRC). Superplasticizer is also added to these concrete mixes to increase	
workability.	workability. The concrete samples are prepared and cured for 7, 14, 28 days. After completing the	
curing duration	on, samples were tested. After That finally, the mechanical properties, as comp. strength,	
split tensile,	bending strength and mode of failure and ultimate load are determined and all	
proportions of	f the mix are compared to traditional concrete.	
Keywords: P	olypropylene, Silica fume, PPFRC, M40, Mechanical properties.	

Paper ID	012021
Title	An overview to micro-wire-electrical discharge machining
Authors	Rajesh K Porwal, Vinod K, Premanand S Chauhan and Rajendra K Shukla
Abstract: Ha	ard to cut metals are widely machined with the help of Wire EDM process which
overcomes n	najor challenges in the conventional machining processes. For generation of
microfeatures	and complex three dimensional structures Wire EDM is considered above other
unconvention	al machining process like abrasive jet, laser, plasma and electron beam machining. Wire
EDM provide	es better dimensional accuracy, machining rate and surface finish, with flexibility to alter
process param	neters. Importance and utilization of micro or nano parts in aerospace, medical, missiles
& ballistics a	nd automobile requires machining process like µ-WEDM to obtain desired features and
intricate geon	netries. This study approaches and enlightens the work areas where micro level features
have been g	enerated using Wire EDM by different researchers, using diverse experimentation,
modeling and	l optimization approaches for Wire-EDM. Finally, conclusion and future scope at the
completion of	f the chapter binds up the present study
Keywords [.] N	Aicro-WEDM Surface roughness MRR Micro machining Kerf

Reywords: Micro-wEDM, Surface roughness, MRR, Micro machining, Kert.

Paper ID	012022	
Title	Horizontal axis wind turbines passive flow control methods: a review	
Authors	Sudhanshu S Manerikar, Sourabh R Damkale, Sanjay N Havaldar, Shubhanga V Kulkarni and	
	Yash A Keskar	
Abstract: In improving wind turbine torque and power output, the aerodynamic characteristics of		
wind turbine	s blades play an important role. Unleashing easy but efficient flow enhancement	
techniques ov	ver airfoil sections used in horizontal axis wind turbines (HAWT) has become essential	
in the increasing demand for this source of renewable energy. This paper investigates various passive		
flow control strategies that have great potential to boost the aerodynamics of blades of HAWT. The		
mechanisms and working principles, along with the findings from various experimental studies for		
passive flow control systems are included in this article. The review suggests simple, cost-effective		
ways of improving lift and controlling the airfoil stalling behaviors to obtain higher power efficiency		
for HAWT.		
TZ I TI		

Keywords: Horizontal Axis Wind Turbine, Passive Flow Control Methods, Stalling Angle, HAWT.

Paper ID	012023
Title	Prediction of passenger flow for north central railway region through ANN
Authors	Anoop Pratap Singh, Ajay Tripathi, Ravi Kumar Dwivedi, Anurag Garg and Rajan
	Kumar
Abstract: A	new method of prediction method is described in this paper. The passenger rate for the
north central	railway (NCR) region is estimated by using artificial neural networks (ANN). An ANN
model is deve	eloped here that can logically estimate passenger flow rates. Which helps the decision
makers to ma	ke the strategies according to the falling population. In this analysis data from the North
Central Railway region from January 2009 to December 2015 have been taken, data such as	
passenger revenue, months and years, festival seasons and passenger numbers. When predicting	
passenger flo	ws for the months of January and February 2016, an error of less than 2.9% is found.
Therefore, it'	s concluded that an ANN prediction method is applied in passenger flow prediction in
railways.	
T 7 1 D	

Keywords: Passenger flow prediction, Back Propagation (BP) Neural Network, Data Analysis.

Paper ID	012024
Title	Investigation on dynamic behaviour of shape memory alloy (SMA) wire embedded composite
Authors	Ranjit A. Patil, Santosh B Rane and Samir B Kumbhar
Abstract: Smart Material are responsive and intelligent materials. Shape memory alloy (SMA) are	
subset of a	broad class of smart material. The functionalities arise from their underlying
microstructur	al changes when subjected to external non-mechanical stimuli like temperature or
magnetic field	d changes. The study of SMA uses and applications has been done because recently use
of shape men	nory alloy used in the field of the automobile, robotics, medical, Aerospace, Biomedical
domain etc. S	hape memory alloy can be used for an actuator, sensor, stiffness changer, and damper.
The extensive	e literature survey has been conducted to explore the potential and research scope in this
project. This	research will help industry to use SMA embedded composite for vibration isolation and
damping	

Keywords: Shape memory alloy, Composites, SMA damper.

Paper ID	012025
Title	Investigation of cold-formed steel open channel element under gravity loads
Authors	Ch Uday Kiran and I Siva Kishore

Abstract: The specimen study consists of short, thin-walled columns made of cold-formed steel with an open top-hat cross-section. The walls in the specimens analyzed are made up of thin sheet component. Profiles were analyzed to classify the critical forces and post-critical stability paths. The ends of the column profile are considered to be supported. The numerical investigation was undertaken using the finite element method. The research includes an investigation of the post-critical stage of the profile on the different gravity loads of different thicknesses, depending on the eigenvalues of the profiles. The numerical simulation of the profiles is done using the ABAQUS® software. Based on a comparison of the outcomes of the profiles, an optimal profile is recommended for further analysis.

Keywords: Gravity loads, critical forces, cold-formed steel, post-critical paths, eigenvalues, finite element method.

Paper ID	012026	
Title	Artificial neural network (ANN) based prediction of process parameters in additive	
	manufacturing	
Authors	Hardik Sondagar, S S Bhadauria and V S Sharma	
Abstract: In	recent years, selective laser melting (SLM), a part of additive manufacturing (AM) is	
one of the m	ost encouraging ones that permit fabricating metallic parts from metal powder with	
complex geor	metry. Diversities in these cycle boundaries become an imperative system to improve	
the nature of the outcome. Cycle boundaries, for example, laser power, scan speed, hatch spacing,		
layer height u	layer height used as input parameters and have a significant impact on the mechanical property taken	
as an output	parameter of the manufactured part. The Artificial Neural Network (ANN) model	
includes a multi-layer perceptron (MLP) learning algorithm named as Levenberg-Marquardt and		
tangent sigmo	bid function consider as preparing and testing functions respectively utilizing MATLAB	
toolkit. Ideal	cycle boundaries are attained dependent on the mean square error function (MSE) and	
correlation co	pefficient (R2)	
Keywords: A	Additive manufacturing, artificial neural network, MATLAB, ANOVA.	

Paper ID	012027
Title	A critical review on the wear and corrosion of carbide free bainitic steel
Authors	Siddharth Sharma, Ajay Tripathi, Ravi Kumar Dwivedi, Rajan Kumar and Anupma
	Agarwal
Abstract: Di	fferent research on wear and corrosion of carbide free bainitic steel over the past two
decades has e	enabled a better understanding and advanced applications of carbide free bainitic steel.
Due to the a	dvanced testing techniques, and equipment the detailed study of microstructure and
nanostructure	d steels has been possible. The earlier years were focused on comparison of the
bainitesteel with the quenched and tempered steel (QT) for identifying the wear tendencies and	
comparison b	etween carbon free bainite and martensite for the corrosive behavior of the carbide free
bainitic steel.	Later the trend shifted towards the nanostructured analysis from microstructure analysis
with the imp	provement in the instruments. Advancements like HT-CAT i.e., high temperature
continuous abrasion tester have an important role to play, the mechanism of material removal rate	
studied. There has also been development in alloying the bainite to reduce the corrosion rate and give	
more strength	. Current trends in the form of study of wear and corrosion of carbide free bainitic steel
and future nee	eds are discussed hereby
Keywords.	carbide-freebainite steel: heat-treatment: rolling/sliding wear: friction: mechanical

Keywords: carbide-freebainite steel; heat-treatment; rolling/sliding wear; friction; mechanical properties.

Paper ID	012028
Title	Influence and application of poka-yoke technique in automobile manufacturing system
Authors	Rajan Kumar, Ravi Kumar Dwivedi, Sudhir K Dubey and Anoop Pratap Singh
Abstract: Manufacturing defect are most important parameter to improve the quality of product for	
the all-manuf	acturing industries. In the manufacturing sector day by day new tool and new techniques
are applying to improve the quality manufacturing at low cost. In this practical study discussed about	
the most important tool of lean manufacturing is poka-yoke (mistake proofing) technique. In all the	
manufacturing sector, a lot of small-small problem is affected the product quality and cost. In this	
paper the 70×90×10 oil seal mixing poka-yoke is solved for the improvement of quality of the	
product and save the manufacturing cost.	

Keywords: Poka-Yoke, Lean Manufacturing, Oil seal, Automobile.

Paper ID	012029
Title	Morphological parameters of nanoparticles used in nano lubrication – A review
Authors	Anoop Pratap Singh, Ajay Tripathi, Matsyendra Nath Shukla and Amit
	Suhane
Abstract: Nanotechnology provides a lot of progress in all areas of engineering and technology.	
Similarly, in the field of lubrication, nano particles play vital role. It has been intensively evaluated in	
the last many years. Nano particles capable of improving the performance of lubricating oil. This review summarizes the morphological parameters of panoparticles in the field of oil lubrication	
Researchers studies various shapes, sizes and compositions of nanoparticles. This review is able to	
provide information about the morphological parameters of nanoparticles for better understanding of	
nano lubrication.	
Keywords: N	Janoparticles, Nanoparticles Morphology, Tribology, Nano Lubricants

Paper ID	012030
Title	Three dimensional finite element analysis on the flexural behavior of composite beams
	under linear displacement
Authors	T Hemanth Kumar and G Sri Harsha
Abstract: This paper presents a three-dimensional finite element model for reinforced concrete	
beams to stu	dy their flexural behavior under linear displacement with different mesh sizes. The
model was as	sessed in terms of failure modes and ultimate strength of composite beams with three
different mes	sh sizes. This was found to be accurate in taking the linear displacement of the
specimens. The analysis was further carried out to study various parameters like the percentage of	
horizontal and vertical web reinforcement, bending moment, shear strength, compression damage,	
and tension damage. Based on the results of this study optimum mesh size was proposed for further	
analysis.	
Varmandar	lash size shear moment interaction having and look winforcement composite costions

Keywords: Mesh size, shear-moment interaction, horizontal web reinforcement, composite sections and linear displacement.

Paper ID	012031
Title	Influence of layer thickness and build orientation on compressive strength of 3D
	printed scaffolds prototypes
Authors	Kiran Kumar Sahu and Yashwant Kumar Modi
Abstract: T	he research on fabrication of customised porous bone scaffolds through additive
manufacturin	g has been gaining momentum since last couple of years. This paper presents an
analysis of c	ompressive strength (CS) of two slightly different calcium sulfate based proprietary
materials nar	nely, Zp150 and VisiJet PXL Core. The comparison is performed on different layer
thickness (L7	(F) and builds orientation (BO) of ZPrinter®450 using full factorial design approach.
Initially, a co	omputer aided design (CAD) model of the porous scaffold with designed porosity is
prepared in a	CAD modelling software and then additive manufacturing is done on four different LT
(0.089 mm, 0	0.101 mm, 0.112 mm and 0.125 mm) and three BO (along x-axis, y-axis and z-axis) of
ZPrinter®450). Analysis of CS reveals that prototypes made of VisiJet PXL Core material have
shown a bett	er strength in comparison with their Zp150 counterparts for similar LT and BO. In
general, prot	otypes of both the materials printed along x-axis posses better CS for all the LT.
Moreover, th	e prototype of VisiJet PXL Core material fabricated along x-axis on layer thickness
0.089 mm po	ssesses highest (1.17 MPa) CS among all the prototypes.
Keywords: 3	D printing, Calcium sulphate, Compressive strength, Full factorial design, Porous bone
scaffold.	

Paper ID	012032
Title	Creeping flow around a spherical particle covered by semipermeable shell in presence
	of magnetic field
Authors	R. P. Namdeo and B. R. Gupta
Abstract: This paper deals the MHD slow viscous flow of electrically conducting fluid around a	
rigid sphere surrounded by a concentric permeable sphere. Darcy's law is adopted to describe the	
flow in semipermeable region and Stokes equation is applied to describe the flow of viscous fluid	
region. The st	tream functions are calculated for the both flow field. The resistance force on composite
sphere is obta	ained and variation of drag force with respect to different parameters has been plotted
graphically. Some limiting cases are deduced and compared with the solution derived in other	
research pape	rs. We observed that drag force increases with increasing magnetic field.
Keywords:	Modified Bessel function, Magnetic field, Drag force, Hartmann number,
Semipermeab	le sphere.
-	-

Paper ID	012033
Title	Computational fluid dynamics and thermal analysis of a lithium-ion battery with
	different cooling system for electric vehicles
Authors	Seshaiah Turaka, P. Obulu and K. Vijaya Kumar Reddy
Abstract: Lit	hium-ion power battery has become one of the main power sources for electric vehicles
and hybrid el	ectric vehicles because of superior performance compared with other power sources. In
order to ensu	re the safety and improve the performance, the maximum operating temperature and
local temperature difference of batteries must be maintained in an appropriate range. In this paper	
presents the i	nodel designed with different type of heat pipe shapes modeling in CREO parametric
software and analyzes the heat pipe with different mass flow inlets (30& 50L/min) thermal thermal	
analysis done	in ANSYS to determine the temperature distribution and heat flux for two types of
phase change	materials (RT50 & Li Fe PO4). Also, CFD analysis to determine the pressure, velocity,
heat transfer	coefficient, mass flow rate and heat transfer rate for the different designs of heat pipe
and different mass flow inlets. It has been observed that in thermal analysis the heat flux value is	
more for lithi	um ion phosphate phase change material (Li Fe PO4) than RT50 phase change material
at U-bend hea	at pipes. Similarly in CFD analysis observed that mass flow rate, heat transfer rate, heat
transfer coeff	icient values are increases by increasing the mass flow inlets and heat transfer rate more
at straight typ	e heat pipes as compared to bend type.
Keywords: L	ithium-ion battery, Cooling System, Computational Fluid Dynamics, Thermal Analysis.

Paper ID	012034
Title	Barrier analysis of green supply chain management by interpretive structural modeling
	(ISM) technique
Authors	P.M. Mishra, Sudhir Sharma, Rajendra K Shukla and Alok Singh
Abstract: Inc	lustrialization plays a major role in the economic development, infrastructure, growth,
and prosperit	y of any country. But these industries affect our environment so badly which causes
global warmi	ng, the greenhouse effect, ozone layer depletion, acid rain, pollution, etc. Due to these
threats, green	supply chain management comes into the picture and many researchers are working on
this. It will help in the sustainable development of society. With the help of the literature, we can	
know about drivers and barriers of Green Supply Chain Management. There are many methodologies	
like Interpreti	ve Structural Modelling (ISM Technique), Regression Analysis, Questionnaire Process
available whi	ch can analyze the effect and response of Green Supply Chain Management. This paper
has analyzed	some researches and shows the response of the industries which had surveyed; drivers
and barriers of	of Green Supply Chain; Requirements for effective Green Supply Chain Management.
The process	of Globalization had imaginary convert the entire world into a single village. Rapid
transportation	and fast communication have encouraged manufacturers from across the world for
remote busine	ess opportunities. In this context, neck to neck competition in price, quality, and post sell
services has b	ecome the mandatory requirement of the market
Keywords: C	Freen supply chain management, Interpretive structural modeling.

012035	
Seismic analysis of tall concrete and steel diagrid structure using response spectrum	
and time history method in E-Tabs	
M Satya Sai Kiran Chowdary, Himath Kumar Y and Lingeshwaran N	
the recent years due to lack of land the construction of high rise buildings widely	
these buildings are affected by lateral loads due to wind or earthquake. To resist these	
ds lots of construction methods are available. Here in system peripheral columns of the	
building are eliminated. To resist the seismic forces we arrange the diagonal columns. In this study	
rmance of 20-story concrete and steel diagrid structures are assessed using response	
hod. Only for concrete diagrid structure using time history method. The present work is	
made for studying the response and time period with acceleration of high rise building with concrete	
rid structural system. To this aim response of two different diagrid structures of G+20	
storey are carried out to obtain optimized position of diagrid. E-Tabs software mainly focus on	
sis of response spectrum and time history method. As per IS456:2000 and IS800:2007	
all structural members of diagrid model are designed and IS1893:2002 and ASCE7-10 is considered	
for seismic analysis for concrete and steel diagrid structure. An evaluation of constraints storey shear,	
storey drift, storey displacement, Time period and Structural weight is done to determine the efficient	
and cost effective structure. The analysis of the building is carried out by using ETABS software.	
Keywords: Concretediagrid, Steel diagrid, High rise structure, Response spectrum method, Time	
d, Seismic analysis, E-Tabs Software.	

Paper ID	012036	
Title	Experimental and comparative analysis of zirconium oxide and flyash reinforced with	
	heat treated Al 7075 aluminum alloy hybrid	
Authors	P.M. Mishra, Ajay Tripathi and Sanjay Soni	
Abstract: Al	uminum Hybrid Composites are the new generation of metal composites that meet the	
latest require	ments in advanced engineering applications. The mechanical properties of these	
requirements,	the ability to use traditional processing techniques, and the possibility of reducing costs	
of aluminum	hybrid components production are all fulfilled. Aluminum alloy 7075 is an alloy with	
zinc as aprimary alloying element. It is strong, with a strength comparable to many plates of steel,		
and has good	fatigue strength and it has advanced properties like lightweight, corrosion resistance,	
high thermal	conductivities, good mechanical properties, better wear resistance, low coefficient of	
thermal expan	nsion as compared to the other conventional materials. Nowadays, Aluminum hybrid	
composites m	aterials are more superior and demanding metal due to their The application of these	
metals is that	metals is that is widely used in the field of Aerospace, Marine, & Minerals processing industries and	
many other i	ndustries due to their wonderful mechanical properties. AL 7075 one of the most	
superior grade	es of the Aluminum alloy to fabricating the single and hybrid composites materials. The	
stir casting m	ethod is extensively used to manufacture or fabricate composites materials.	
Keywords: Z	irconium, SEM, Aluminium Alloy, Hybrid Composite.	

Paper ID	012037
Title	Experimental study on performance and emission character of C.I. engine fuelled with
	Plastic oil (PO) along with diesel fuel blending
Authors	Kawade Ganesh H, Tripathi Brajendra and Gothwal Suman
Abstract: In this experimental investigation evaluate the sound effects of plastic fuel in a single	
cylinder four stroke diesel engine. Plastic oil fuel produced from desecrate plastic with the help	
numely aid tool	anique which must quitable for conversion. Also shamical and physical properties are

cylinder four stroke diesel engine. Plastic oil fuel produced from desecrate plastic with the help pyrolysis technique which most suitable for conversion. Also chemical and physical properties are tested for various blends as per the ASTM standard. Selected diesel engine tested with plastic oil and diesel fuel blend. Blending endowment selected for the testing of engine such as PO25, PO50, PO75 and PO100 for a load 25%, 50%, 75% and 100% of load of engine. In each experiment test, load on engine is increased and recorded the specific fuel consumption, mechanical efficiency, brake thermal efficiency. Also simultaneously measure the tail pipe emission of engine such as Carbon Monoxide, UBHC emission and Oxides of Nitrogen emission etc. obtained results are compared with standard performance characteristics of diesel engine. Finally these investigations prove the PO oil and its blending with diesel fuel are suitable for selected engine. Up to PO75 may use as a source of alternative fuel for CI engine without any major modification.

Keywords: Waste Plastic fuel, Properties of PO, Engine Performance, Emission.

Paper ID	012038
Title	Biomechanical matrix-multibody coupled human body model for seat to head
	transmissibility
Authors	Raj Desai, Anirban Guha and P. Seshu
Abstract: He	alth hazards of human body to whole body vibrations (WBV) have been linked with the
incidence of s	spinal ailments within the drivers of vibrating moving equipment. The investigations on
the biodynam	ic responsiveness of body segments; thus, it is relevant for a profound understanding of
prospective in	npairment anticipations and design refinements. Current research work concentrates on
seated body	biodynamic direct and cross axis responses to seat induced vertical vibration, and
establishment	of an analytical model for the prediction of human anatomy comfort parameters. In the
course of WBV vibrations of the human anatomy in a seated position (driver or passenger), the	
movement of	the head is affected by the backrest forces transmitting to the lumbar section of the
spinal column	Accordingly, it is crucial to reflect backrest assistance while building the human body
model to capt	ivate direct and cross axis seat to head transmissibility. Thus, the model results should
accurately represent the internal forces, power absorbed, body acceleration accurately. The human	
anatomy is viewed as a biodynamic system of interconnected masses. A two-dimensional nine degree	
of freedom (DoF) matrix-multibody coupled backrest supported seated human anatomy model is	
established a	nd validated to depict vertical and fore-aft head motion. Multi-objective genetic
algorithm-bas	ed optimization has been used for model parameter identification by minimizing the
error differen	ce separating the experimental and model-derived seat to head transmissibility.
Keywords: B	iodynamics, Matrix model, Multibodymodeling, Optimization, Vibrations.

Paper ID	012039
Title	Opportunities and mitigation strategies for biomaterials: To combat the challenges of COVID-19 outbreak
Authors	Shreyasi Paul and Shubhadip Paul

Abstract: In the last several months, "Coronavirus Disease 2019" (COVID-19) has intensified to a global pandemic at an abnormal rate. This pandemic of COVID-19 has disclosed major flaws in our abilities to attenuate spreading of contagious viral disease and provide treatment to patients, leading to a crisis in public health. Various Clinical views are discussed, considering the mitigation tactics and scope for novel biomaterials involved in treatment strategies, diagnostics and surface coatings for deactivation of virus. Call for multidisciplinary approaches in disease detection and management by biomaterials community are expected to play a vital role to combat the challenges of present and future outbreaks.

Keywords: Antiviral, Biomaterials, Pandemic, Diagnostics.

Paper ID	012040
Title	Review on various design aspects of the modern bicycle
Authors	D Baviskar, A Bhosale, A Baswa and K Kulkarni
Abstract: In	today's world where we are surrounded by the smoke emitting vehicles, we must come
up with more	effective and sustainable solutions for transport. One of which is electric vehicles and
other being b	icycle. Since the innovation of bicycles till date a lot of improvements are done in its
design, utility	, and applications. Bicycle riding is one earliest modes of transport. Being so, it is the
cleanest way	of transportation as does not create any waste out of it. Bicycle riding is also considered
as one the mo	ost effective ways of exercising. Bicycles find the largest market in the vehicle industry
as it attracts s	small kids right from the age of 4yrs to senior citizen. The advancement in the field of
ergonomics p	lays vital role in doing so. The developments on design and power transmissions have
also up lifted	the bar for utility. Due to this the application of bicycles now is not limited to simple
exercising, ra	cing, or travelling but also in the field of adventure sports, mountain climbing etc
Keywords: M	Interial frames, Transmission system, Electric bicycle, spoke-less and center-less wheel.

Paner ID	012041
	Evolution of the effective mechanical momenties of nolm oil fuel ash based fiber
Title	Evaluation of the effective mechanical properties of paim of fuel ash based fiber
	reinforced concrete
Authors	Kristam Srikanth, Durga Chaitanya Kumar Jagarapu, T Venkat Das, Syed Hamim
	Jeelani And Arunakanthi Eluru
Abstract: Ce	ment concrete is one of the utmost regularly used building materials next to water. But
one tonne of	cement produces 1.25 tonnes of CO2 and pollutes the environment. To keep that in
mind, in this study the cement is partially replaced with POFA (palm oil fuel ash) up to 30% (5%	
equal intervals), and steel fibers are added to the volume of concrete by 0.5% apart from normal	
concrete. Generally, POFA is one of the Agro-Industrial garbage materials which is coming as of the	
palm oil industry, with the growing amount of waste produced from the different processes there has	
been an increasing the waste generation. Increasing intrust in the use of agro - Industrial waste to	
achieve the potential advantages. Comparing with cement, POFA contains a high silica content.	
specimens are cast with M40 grade of concrete. The prepared POFA based Fibre reinforced concrete	
(FRC) was tested for all types of mechanical properties, like compressive strength, split tensile	
strength, bending strength, and load-deflection curve. All these properties are compared with the	
nominal concrete	
Keywords: P	OFA, Steel Fibres, FRC, Mechanical properties, and Agro-Industrial waste.

Paper ID	012042
Title	Effect of coir fibres on strength, thickness and cost of PMGSY roads
Authors	Ayush Mittal
Abstract: Th	e present study discusses about the effect of adding coir fibres in poor soil in various
percentages (i.e. 0.15%, 0.30%, 0.60%, 0.90%, 1.20% and 1.5%) on the strength, thickness and cost
of low volum	e rural roads under PMGSY. Soil sample contains substantial amount of fines and is
classified as c	elay of high compressibility (CH). Laboratory compaction and California Bearing Ratio
(CBR) tests a	re conducted for various reinforcement conditions. The results indicate improvement in
dry density a	nd CBR with increase in fibre content upto 0.90% and beyond that it decreases. The
thickness of	pavement is determined as per design catalogues provided in IRC:SP:72-2015.
Maximum coa	st reduction of 21% and 19% in pavement construction corresponding to traffic category
T-6 and T-9,	respectively, is reported when reinforced with 0.90% coir fibres.
Keywords: C	oir Pavement Reinforcement Poor Soil PMGSY

Paper ID	012043
Title	Developed software for automation toolpaths for laser processes
Authors	Igor Ortiz, Piera Alvarez, M Angeles Montealegre, and Carles Creus Lopez
Abstract: Ac	lditive manufacturing started in the eighties as a new technology for repairing added
value parts. 7	The additive manufacturing technology is based to produce complex features layer by
layer, without	t using complex tooling. For programming coating toolpaths, many operator hours are
needed, a sof	ftware is necessary to facilitate this task of programming complex 3D geometries. A
customized C	CAM-system for laser metal deposition is needed. The objective of this work is to
introduce the	new software developed by Talens System. This software has been designed for
automating th	toolpaths and process parameters researched and validated in our laser machine tool,
for additive manufacturing as well for laser hardening.	
Keywords:	Additive Manufacturing, Laser metal deposition, software, toolpaths, CAD/CAM,

Coating.

Paper ID	012044
Title	Development of a low-cost monitoring system for open 3d printing
Authors	M S Khandpur, M Galati, P Minetola, G Marchiandi, L Fontana and V Stiuso
Abstract: 3D	printers for Rapid Prototyping and Manufacturing have been widely accepted by large
industries and	in many small scale industries or by many hobbyists. Due to its nature of layer by layer
addition to f	orm a product, identifying defects between the layers can be a crucial strategy to
determine the	e quality of a product by carefully monitoring this process to avoid any failures or
abysmal print	t quality. This kind of approach gives an advantage in the applications where rapid
prototyping o	f products requires high customization without compromising the quality. In this work,
a low-cost ca	mera is installed in an open 3D printer, and computer vision algorithms are used to
implement an	in-situ monitoring system. The defects can be evaluated by comparing the Printed layer
to its open G-	code. This G-code printing file is also modified to introduce the image capture sequence
step after eac	h layer. The value of the area of missing or exceeding material is returned to the user
with their cor	responding images. A decision can be made to abort the job in case of important defects
to avoid unne	cessary waste in material, time and costs.
Kouworder 2	d printing Monitoring Defeats Image analysis

Keywords: 3d printing, Monitoring, Defects, Image analysis.

Paper ID	012045
Title	Improvement in engineering properties of clay soil using waste demolished material
Authors	Gaurav Jain, Prem Prakesh Pandit and Manoj Narwariya
Abstract: Ex	pansive soil contain the highly active clay mineral in the form of montmorillonite due to
which expense	ive soil swell upto 7% upon adding 1% of water, which may lead to unequal settlement
of subsoil. This research represent a complete framework to overcome this drawback of expansive	
soil by adding waste material like fly ash and brick waste to clay soil in order to improve its	
engineering properties. Fly ash can be easily obtained from coal combustion plants while brick waste	
is easily avai	lable at demolition area. In this research fly ash is added in different percentages 0%,
4%, 8%, 12%	, 16% and brick waste is added 5%, 10%, 15%, 20%, 25% by weight of soil. The results
of test show	that the addition of fly ash and brick waste reduces the liquid limit, plasticity index,
optimum moisture content, % free swell index and increases unconfined compressive strength with	
increasing California bearing ratio value.	
Keywords: F	Fly ash (FA), brick waste (BW), Liquid Limit (LL), Plastic Limit (PL), Plasticity Index

(PI) California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS).

Paper ID	012046
Title	Sustainable use of polypropylene fibers and palm oil fuel ash in the production of
	geopolymer concrete
Authors	Bala Gopal Adapala, Durga Chaitanya Kumar Jagarapu, Syed Hamim Jeelani, B.
	Sarath Chandra Kumar and Arunakanthi Eluru
Abstract: Ge	opolymer concrete is an innovative advance in the world, in this concrete cement is
fully substitut	ted with pozzolanic materials like fly ash and GGBS. In this present study fly ash is
replaced with	POFA (Palm oil fuel ash) up to 25% (0%,5%,10%,15%,20%,25%), 10% of stone dust
is replaced wi	th sand. In addition to the above materials, 0.2% of polypropylene fibers were added to
the volume o	f concrete. 2.5 ratio of sodium silicate and sodium hydroxide solutions are added as
Alkali activat	ors for 10M molarity. Initially, the specimens are oven cured 800 C for about 24hrs and
after that leave for ambient curing. All the specimens stood tested after 7 and 28 days of ambient	
curing. The p	repared POFA based geopolymer was tested for all types of mechanical properties, like
compressive	strength, split tensile strength, bending strength and load deflection curve. All these
properties are	compared with the nominal concrete.
Varue and a T	OFA

Keywords: POFA, stone dust, polypropylene fibers, geopolymer concrete, Mechanical properties, and ambient curing.

Paper ID	012047
Title	Experimental testing of 3D printed polymeric heat exchangers
Authors	L Fontana, P Minetola, F Calignano, L Iuliano, M S Khandpur and V Stiuso
Abstract: Un	like conventional manufacturing technologies, additive manufacturing and 3D printing
empower eng	gineers with much more design freedom. Heat exchangers with complex internal
channels or la	ttice structures can be designed for layerwise manufacturing by maximizing the surface
to volume ra	tio. Low-weight polymeric heat exchangers are employed in aviation and aerospace
applications.	For increasing the thermal performance of polymers, additives can be used such as
graphene. In	this study, a Grafylon filament is used for the production of a simple heat exchanger by
3D printing.	The heat exchanger is composed of two external shells and an interior duct with a two-
stage 45-degr	ee bend. For watertight purposes, the duct is manufactured by selective laser sintering
of polyamide	powder. Two replicas of the shells are fabricated by 3D printing of Grafylon and
acrylonitrile b	butadiene styrene (ABS) respectively. The thermal performance of the two materials is
experimentall	y tested and compared also to numerical simulations. The results of the study show that
the Grafvlon	filament provides enhanced thermal performance to 3D printed heat exchangers of
polymeric ma	terial

Keywords: 3D printing, grafylon, thermal behavior, heat exchanger.

TitleExperimental assessment of compensated distortion in selective laser melting of Ti6Al4V partsAuthorsV Stiuso, P Minetola, F Calignano, M Galati, M S Khandpur and L FontanaAbstract:Selective laser melting (SLM) is a well-established Additive Manufacturing technique for the fabrication of end-use metal components. Process reliability and maximum product quality are ensured by 20 years of technology development. Nevertheless, depending on the complexity of the part geometry and on the operator experience, different trials are often needed before getting a part first time right. To reduce the number of failed jobs, simulation software packages predict residual stresses and related distortions in SLM parts and propose a compensated geometry for the "right first time" production of the product. In this works, the simulation routines of Amphyon software by Additive Works are experimentally calibrated and validated for the fabrication of a reference geometry by means of an EOSINT M270 machine and Ti6Al4V powder. The calibration of
Ti6Al4V partsAuthorsV Stiuso, P Minetola , F Calignano, M Galati, M S Khandpur and L FontanaAbstract: Selective laser melting (SLM) is a well-established Additive Manufacturing technique for the fabrication of end-use metal components. Process reliability and maximum product quality are ensured by 20 years of technology development. Nevertheless, depending on the complexity of the part geometry and on the operator experience, different trials are often needed before getting a part first time right. To reduce the number of failed jobs, simulation software packages predict residual stresses and related distortions in SLM parts and propose a compensated geometry for the "right first time" production of the product. In this works, the simulation routines of Amphyon software by Additive Works are experimentally calibrated and validated for the fabrication of a reference geometry by means of an EOSINT M270 machine and Ti6Al4V powder. The calibration of
AuthorsV Stiuso, P Minetola , F Calignano, M Galati, M S Khandpur and L FontanaAbstract:Selective laser melting (SLM) is a well-established Additive Manufacturing technique for the fabrication of end-use metal components. Process reliability and maximum product quality are ensured by 20 years of technology development. Nevertheless, depending on the complexity of the part geometry and on the operator experience, different trials are often needed before getting a part first time right. To reduce the number of failed jobs, simulation software packages predict residual stresses and related distortions in SLM parts and propose a compensated geometry for the "right first time" production of the product. In this works, the simulation routines of Amphyon software by Additive Works are experimentally calibrated and validated for the fabrication of a reference geometry by means of an EOSINT M270 machine and Ti6Al4V powder. The calibration of
Abstract: Selective laser melting (SLM) is a well-established Additive Manufacturing technique for the fabrication of end-use metal components. Process reliability and maximum product quality are ensured by 20 years of technology development. Nevertheless, depending on the complexity of the part geometry and on the operator experience, different trials are often needed before getting a part first time right. To reduce the number of failed jobs, simulation software packages predict residual stresses and related distortions in SLM parts and propose a compensated geometry for the "right first time" production of the product. In this works, the simulation routines of Amphyon software by Additive Works are experimentally calibrated and validated for the fabrication of a reference geometry by means of an EOSINT M270 machine and Ti6Al4V powder. The calibration of
Amphyon is performed using three cantilever specimens and the calibrated SLM simulation is then used to compute the compensated shape of the reference part. The validation of the compensated shape by comparison to the real part geometry shows that Amphyon routines have good prediction capability and dimensional accuracy.

Keywords: Additive Manufacturing, Laser powder bed fusion, process simulation and Ti6Al4V.

Paper ID	012049
Title	Development of ecosystem for effective supply chains in 3D printing industry - An
	ISM approach
Authors	S Singh and V Agrawal
Abstract: 3I	D printing (3DP) is an important technology to manufacture the objects of intricate
designs that a	are otherwise not possible for traditional manufacturing. This technology has witnessed
growth in res	search papers in the last decade that shows the increasing interest of researchers and
users in this	technology. Many researchers have predicted and written about the unimaginable new
supply chain configurations after the large-scale adoption of 3D printing. A supply chain is a lifeline	
for any busin	ess because it drives the business by satisfying customers' demands economically. This
study was un	dertaken to explore the factors that are critical for developing a supply chain ecosystem
for the 3DP	industry. The study used the literature of the relevant research papers, conference
articles, addi	tive manufacturing business reports, and supply chain management (SCM) research
papers & art	cles on 3D printing technology. This study highlights factors that are critical for the
supply chain	ecosystem for the 3DP industry. Interpretive Structural Modelling (ISM) methodology
identified inte	eractive association among those factors. Impact Matrix Cross-Reference Multiplication
Applied to a	Classification (MICMAC analysis) has classified those factors into four categories for
better unders	tanding and strategy making. The stakeholders in the 3D printing industry can draw
insights from	the output of this study. Researchers can do further research on these factors for the
benefit of sus	tainable supply chains in the 3DP industry.

Keywords: Supply Chain, Supply Chain Management, Additive Manufacturing, 3D Printing.

Paper ID	012050	
Title	Dynamic analysis of laminated composite sandwich plates with a circular hole	
Authors	Deepak Kumar, Vinayak Kallannavar, Subhaschandra Kattimani, B. Rajendra Prasad	
	Reddy	
Abstract: The current manuscript pacts the finite element investigation of the modal characteristics		
of the laminated composite sandwich (LCS) plate containing a circular hole. A series of simulations		
are executed to examine the influence of fiber orientations, edge constraints, the ratio of the thickness		
of core to face sheet, the radius of hole, and location of the hole on the system on the frequency		
response of the system. The analysis are carried out using ANSYS simulation tool		
Keywords: Finite element analysis, Laminated composite sandwich plate, Plate with the hole.		

Paper ID	012051
Title	Comparative study of pressure variations in water distribution network due to change
	in location of elevated service reservoir.
Authors	Arun Reddy Thumma and A. Aravindan
Abstract: Th	is paper compares the pressure variations in a water distribution system due to a change
in the location	n of an elevated service reservoir with an intermittent type of supply for a continuously
increasing demand. For this study Water Gems connect edition software is used for the design of a	
water distribu	tion network. This study is conducted in the Eturnagaram habitation of Mulugu district.
The Water Di	stribution Network is designed for 30 years with PVC as pipe material and intermittent
type of suppl	y. Further, this water distribution system is analyzed for pipe bursts and proposes a
framework fo	r the operation and maintenance of the water distribution network.
Keywords: V	Vater distribution system, Water Gems, Pressure variations, Operation and maintenance,
Pipe network	ng.

Paper ID	012052	
Title	Novel reactive power compensation technique for an inductive load connected with	
	micro grid	
Authors	S. Arockiaraj, Sakthisudhursun, M. Jawahar and A Suban	
Abstract: The modern power factor repair process using Ardunio Mega2560 provides fast, easy and		
efficient power adjustment among other methods. Adjusting the active factor of the incoming load		
will reduce the amount of active energy. The speed of adjustment for proper identification of the		
power factor was performed using the Ardunio Mega2560. The incoming load causes a lower power		
factor so by using the appropriate system such as Ardunio Mega2560, the appropriate capacitor bank		
and other components the problem is solved and the results are obtained with MATLAB verification		
Whenever the power factor deviates from the required value or it is automatically closed and saves it		
at all times. T	The Ardunio Mega2560 is connected to the MATLAB and the power level is available.	
Keywords: A	Ardunio, PFC, power factor, ATmega.	

Paper ID	012053
Title	Grey wolf optimizer and other metaheuristic optimization techniques with image
	processing as their applications: a review
Authors	Alok Kumar, Lekhraj, Safalata Singh and Anoj Kumar
Abstract: Im	age processing is an evolutionary field in the domain of computer vision that currently
has a compre	hensive spectrum of applications. It is being employed in image segmentation, image
classification,	medical imaging, image compression, etc. A lot of realworld prominent issues are
tackling empl	oyed through these application techniques. These techniques can be employed by means
of various al	gorithms; however, these offered immensely dominant outcomes with existing and
modified opti	mization algorithms. Some of the metaheuristic optimization algorithms applied during
the above te	chniques include Ant Colony Optimization (ACO), Genetic Algorithm (GA), Bat
Algorithm (H	BA), Grey Wolf Optimizer (GWO), Evolutionary Strategy (ES), Particle Swarm
Optimization	(PSO), Genetic Programming (GP), and so forth. Hence, this manuscript's main
objective is the	hat the study of several applied optimization algorithms and their variants thus lead to
the various do	main of image processing concludes it work more efficiently and robustly.
Keywords: (Grey Wolf Optimizer, Metaheuristic Algorithms, Support Vector Machine, Image
Segmentation	, Image Classification, Medical Imaging, Image Compression.

Paper ID	012054
Title	Development of novel single source precursor of tin for deposition of tin oxide thin
	films for various applications
Authors	Priyanshu Sharma, Santosh Kumar Tripathi and Piyush Jaiswal
Abstract: No	ovel single source organometallic precursor, Triethanolamine Tin (II) (Sn-TEA) was
synthesised b	y the reaction of SnCl2 and triethanolamine in presence of Sodium acetate. The Sn-TEA
precursor was	s characterized by TGA, FTIR, 1H and 13C NMR to confirm its thermal stability and
predict its molecular structure. The 1H and 13C NMR showed formation of organometallic molecule	
as TEA and acetate form a coordination sphere around the Sn atom in a stable structure. The TGA	
showed two	thermal decomposition steps at ~206.14oC and ~750oC and residue at 800 °C. The
precursor was	s pyrolysed at 400oC and residual powder was characterized by FTIR which indicated
formation of	Tin Oxide. The precursor was then used to deposit SnO2 films by microwave assisted
solvothermal	process on glass substrates. The films were characterized with XRD, FESEM and tested
for conductiv	vity. XRD confirmed the formation SnO2 of cubic lattice. The effect of precursor
concentration	and microwave irradiation time on the film morphology, compositional analysis and
electrical con	ductivity was studied thoroughly. Sn-TEA complex proved to be a potential single
source precur	sor for SnO2 production and it can be applied to develop highly pure/doped SnO2 films
for gas sensin	g applications in cost effective manner.

Keywords: Organometallic precursor, Microwave- irratiated process, SnO2, Gas sensing.

Paper ID	012055
Title	Characterization of waste plastic in flexible pavement
Authors	Balram Singh Rajput, Sachindra Pratap Singh Rajawat and Gaurav Jain
Abstract: Th	e degree of waste plastic in metropolitan strong waste (MSW) is escalating because of
growth in pop	bulace, urbanization, improvement exercises and way of life changes that have prompted
far reaching f	inishing. Since, these aren't orchestrated deductively and believability to make ground
water source	defilement. This plastic waste material midway substituted the standard material to
enhance need	led mechanical ascribes designed for explicit road mixture. In the standing research
made method	ologies to utilize waste plastic for improvement inspiration driving roads and versatile
black-tops ha	s explored. In standard road construction, majorly bitumen is utilized as folio. For the
top most laye	r of flexible black top bitumen can be modified with bitumen blend and lavish plastic
pieces. This v	waste plastic altered bitumen mixture shows improved limiting properties, sufficiency,
thickness and	impenetrable to water
Keywords: A	Aggregate, Bitumen, Waste plastic, Plastic-coated aggregate (PCA), Plastics coated

aggregate with bitumen, Polymer modified bitumen (PMB), Marshall stability.

Paper ID	012056	
Title	Parametric analysis of hole circularity for laser percussion drilling of carbon fibre	
	reinforced plastic using Nd: YAG Laser	
Authors	Yadvendra Kumar Mishra, Sanjay Mishra, S C Jayswal and Ajay Suryavanshi	
Abstract: Ho	bles of diameter less than 1 mm has wide application of manufacturing sector. Laser	
beam can be	conveniently used for creation of such hole in different materials. The Carbon Fiber	
Reinforced C	Composite (CFRP) is quickly replacing the conventional materials in most of the	
engineering a	pplications. Therefore, a detail parametric study to analyse the influence of factors like	
laser current, laser interaction time, pressure of assist gas, workpiece thickness and incidence angle		
on the geometrical accuracy of hole in terms of hole circularity at top (HCT) has been explored by		
changing the	individual contributing factors. Small holes (< 1mm) have been fabricated with Nd:	
YAG laser of	E millisecond pulse duration in CFRP workpiece of thickness 1mm, 3mm, and 5 mm. It	
was observed that hole circularity at top surface is highest for zero angle of incidence. The increase		
of laser current, interaction time, and pressure of assist gas increases the HCT when the laser		
direction is no	ormal to the workpiece whereas it shows a decline trend when the angle of incidence of	
10o and 20o	. The increase of workpiece thickness reduces the HCT irrespective of angle of	
incidence.		
Keywords:	Statistical modelling, parametric analysis, hole circularity, Nd: YAG laser, Laser	

percussion drilling.

Paper ID	012057
Title	RCC chimney for 800MW thermal power plant
Authors	Tulasi Sai Krishna and Ch Mallika Chowdary
Abstract: A outside living ensure that the load, Wind lobasic calculate location was considered of calculating are by using Ind softwares use	Chimney is an industrial structure used to ventilate hot flue gases from the furnace to the atmosphere. The Chimneys are typically vertical, or as near as possible to vertical, to e gases flow smoothly. As a result of the procedure of chimney is ability to handle Dead ad, Earthquake load and Temperature load. In this research, a chimney is starting from tions to analytical calculations. A Chimney analysis for the thermal power plant, the taken as Vijayawada, (AP). Where as the basic wind speed and seismic zone were nly in that particular location. Analysis was about how to calculate the height, rea and volume if the thermal plant generates 800MW power. Analysis was calculated ian code IS 4998-2015.in manual and software. STAAD Pro and ANSYS are the d for the validation.
V	VI

Keywords: Chimney, Wind loads, STAAD Pro, ANSYS, Manual work.

Paper ID	012058	
Title	Palm oil fuel ash as partial substitute to cement in concrete: performance at elevated temperatures	
Authors	U.V. Narayana Rao and N.Venkata Sairam Kumar	
Abstract: In this paper, the palm oil fuel ash (POFA) concrete is produced using POFA as partial		
replacement to cement (0%-P0, 20%-P20, 40%-P40 and 60%-P60) by weight. The POFA concrete		
specimens are subjected to elevated temperatures of 200oC, 400oC and 800oC for duration of 2		
hours. The compressive strength, ultrasonic pulse velocity (UPV) and mass loss (%) of POFA		
concrete are evaluated. The results indicate that the compressive strength is enhanced by the use of		
POFA in concrete. At elevated temperatures, POFA concrete showed higher resistance than PO		
concrete (control concrete) and P20 concrete showed best performance in POFA concrete, when		
subjected to elevated temperatures. From the experimental results, it can be observed that 20% POFA		
can be used as partial replacement to cement in producing sustainable concrete.		
Keywords: C	Concrete, elevated temperatures, Palm oil Fuel ash, sustainable concrete.	

Paper ID	012059
Title	Deep learning based optimum fault diagnosis of electrical and mechanical faults in induction motor
Authors	Vikas Singh, Purushottam Gangsar, Ashok Atulkar and Rajkumar Porwal

Abstract: Among all the motors Induction motor (IM) plays a vital role in industry and the demand for their reliability and safe operation is increasing day by day. They are reliable but they do wear out if not maintained timely which in turn will lead to excessive loss of revenue and also man power and this motivates us to develop an intelligent methodology for diagnostic of incipient faults in Induction Motor. This paper focuses on the development of optimum Deep Learning based diagnostic technique to detect the mechanical and electrical faults in Induction Motor. Here, mechanical and electrical faults of different severity level are being tested on machine fault simulator using acquired current and vibrational signals. In this work, optimum model of Deep Neural Network (DNN) based on critical vibration and current features is developed and finally used to timely and effectively detect that which kind of faults the given IM is dealing with. The results are added and discussed in the result and discussions.

Keywords: Induction motor, electrical faults, mechanical faults, deep neural network, overall accuracy, loss percentage, overfitting, relu and softmax.

Paper ID	012060	
Title	Experimental study on dimensional accuracy of freeform fabricated thermoplastic polyurethane	
Authors	Tarun Bhardwaj, Pradeep Jain and Devendra Singh	
Abstract: Fu	sed filament fabrication (FFF) is the prominent additive manufacturing (AM) process	
used for fabr	ication of customized parts using layer-by-layer approach by fusing the filament. The	
challenge in FFF AM process is to improve the dimensional accuracy of parts. To overcome this		
challenge, the aim of this research article is to enhance the dimensional accuracy of FFF		
Thermoplastic Polyurethane (TPU) parts by optimizing the various process parameters settings. In		
this research	, process parameters affecting the dimensional accuracy are examined utilizing the	
Taguchi based design of experiment (DOE) approach. Main effect plots for mean and SN ratio are		
drawn to inv	estigate the effect and dominance of each parameter. This study helps to fabricate the	
TPU using FI	FF with high dimensional accuracy.	
Keywords: I	Design of experiments, Process parameter optimization, Thermoplastic polyurethane and	
Dimension ac	curacy.	

Paper ID	012061	
Title	Review of structural health monitoring attributes optimization with multiple regression and teaching learning based optimization	
Authors	Ashish Khaira, Ravi K. Dwivedi and Sanjay Jain	
Abstract: It was observed in reviewed literature that researchers preferred Weibull analysis for		
analyzing failure, as it is a generalized uncertainty failure model, based on variable failure rate in		
structural health monitoring (SHM). Apart from this, in real-life situations, it is difficult to get all the		
required data	for the standard objective function, therefore, some researchers used some pre-existed	
values in place of unavailable ones, but it usually leads to error. To reduce this error, this research		
work review	ed Multiple Regression and Teaching Learning Based Optimization (TLBO). This	
review sugge	ested combining Multiple Regression and Teaching Learning Based Optimization	
(TLBO) for successful structural health monitoring (SHM).		
Keywords: F	Failure analysis, TLBO, optimization, condition based maintenance (CBM), regression,	
structural hea	lth monitoring (SHM).	

Paper ID	012062	
Title	Optimization of structural health monitoring attributes under variable failure rate condition using teaching learning based optimization and multiple regression	
Authors	Ashish Khaira, Ravi K. Dwivedi and Sanjay Jain	
Abstract: Th	e manufacturing industries prefer to use exponential equations for evaluating reliability,	
failure rate,	etc., while assuming failure rate constant, but in real life failure rate is not always	
constant. Thi	s research work proposes a novel combination of Multiple Regression and Teaching	
Learning Based Optimization (TLBO). This work starts with regression modeling, to form an		
objective function from available data; secondly TLBO technique used, to obtain optimum values of		
structural hea	structural health monitoring (SHM) attributes through cost minimization and finally, Weibull analysis	
to check the	effect of optimum values of SHM attributes on β . The final results indicated that the β	
parameter reduces, which symbolized reduction in failure rate & SHM cost and, improvement in		
system reliability, thus validates the adopted methodology of combing multiple regression with		
TLBO, thus success of this work become the backbone for intelligent structures for SHM system.		
Keywords: F	Failure analysis, TLBO, optimization, condition based maintenance (CBM), regression,	
structural hea	Ith monitoring (SHM).	

Paper ID	012063
Title	Polymer nanocomposites with nanostructured copper flakes for protection as barrier in packaging materials in food Industry
Authors	Sudha R Karbari, Kiran Guru Prasad Shetty and Nivedita S Desai
Abstract: Polymer nanocomposites as multilayered and single layer are used as barrier protection for the entry of UV and moisture. Here the polymer nanocomposites with novel nanoflakes are simulated with the optimized geometry of nanoflakes. The barrier properties are verified with the change in width of the dispersed nanoflakes of polymer matrix. The optimization of the copper nanoflakes is investigated and studied using two model with different dimensions of the nanoflakes in the polymer nanocomposite. The diffusivity flux at the interface of air and the polymer matrix varies from 5×10^{-12} mol/(m2 s) and 4×10^{-5} mol/(m2 s) for the models proposed. Keywords: Nano flakes, Nano packaging.	

Paper ID	012064	
Title	Glycosuria sensing based on nanometric plasmonic polaritons	
Authors	S Sahu, P K Jain, N Mudgal and G Singh	
Abstract: Surface Plasmon waves exhibit an interesting characteristic of enclosing light above the		
diffraction limit. In this work surface plasmon sensor using Metal-Insulator-Metal configuration is		
demonstrated for an application of Glycosuria detection. The sensing device possesses a slot		
waveguide and an elliptic cavity in a metallic substrate. On injection of TM polarized mode, surface		
plasmon wave coupled with cavity causes the generation of resonating modes which is used to		
analyze the concentration of glucose in urine. The simulation study is performed using the Finite		
difference Time Domain (FDTD) method. The sensitivity of the sensor is 792.8 nm/RIU and the		
figure of merit is 113.25. Based on the analysis it is remarked that the device is suitable for an on-		
chip application.		
Keywords: surface Plasmon, refractive index sensor, biosensor.		

Paper ID	012065	
Title	Effect of ball Powder Ratio on microstructure and compressive behaviour of porous	
	Ti-4wt %Al alloy	
Authors	Pradeep Singh, P. Agarwal, J P Shakya and D.P. Mondal	
Abstract: Ti and Al powders were milled in the weight proportion 24:1 using a high energy		
planetary ball mill. Ball to powder ratio (BPR) was varied (10, 15, and 20) in the milling process.		
Powder mixture milled with different BPRs were characterized by the XRD and FESEM to probe the		
evolution of phase and particles shape and size. Further, these mixtures were used to make porous		
cylindrical samples through powder metallurgy and space holder technique. The used amount of		
space holder was 60 v%. Compression test of the samples were performed on Universal Testing		
Machine. It was analysed that crystallite size, shape and size of the powder particles considerably		
affected by the used ball to powder ratio. XRD confirms that phase formation is invariant with the		
BPR. The observed relative density is about 10% higher than the used space holder content. Porous		
sample synthesized by the powder milled with 15 BPR has higher plastic collapse stress and energy		
absorption capacity as compared to the samples made of the powder milled with 10 and 20 BPRs.		
Keywords: Metal foam; Mechanical alloying; Ball Milling; Space holder.		

Paper ID	012066	
Title	Harmonic analysis of annular sector sandwich plate using FEM	
Authors	M Kumar , M Narwariya and A K Sharma	
Abstract: In present study, vibration and harmonic behaviors of annular sector sandwich plate of two		
orthotropic composite materials are analyzed using FEM technique. Sandwich plate made of two face		
sheet and one core sheet in middle has been modelled using an ANSYS APDL FEM tool. A suitable		
finite element model is developed and proposed based on first order shear deformation theory. The		
model has been discretized using appropriate elements i.e. 8-node solid 185 for core sheet and		
SOLSH190 for face sheet from the ANSYS element library. Effect of varying face sheet thickness is		
demonstrated on vibration as well as harmonic behaviors of sandwich plate and related findings are		
discussed briefly. Effect of sector angle has also been demonstrated. The authenticity of the proposed		
methodology has been verified by comparing the simulation results with available literature. It can be		
observed that the results obtained are in good propinquity and presently proposed model shows the		
results with adequate accuracy.		

Keywords: Sandwich plate, Sector Angle, Harmonic Behavior, Mode Number, Resonance, FEM.

Paper ID	012067	
Title	Fitle Analysis of BIM application trends in construction industry for waste reduction and	
	sustainable outcomes	
Authors	Narmada Vadlamudi, Bommareddy Sesha Sai Ratnamala and V Sree Lakshmi	
Abstract: T	he examination has built up a structure for BIM-based authoritative abilities	
advancement	for upgraded appropriation and compelling utilization of Building Data Demonstrating	
(BIM) inside	the Indian engineering associations. In the past examination, a requirement for changing	
the convention	nal practices in Indian development area has been more than once communicated. A	
near concern	has moreover been showed up to advocate for the use of lean and sustainable concepts	
to boost productivity and lead a group of development projects in India; to minimise flaws in the		
exercises and increase the hold subsidises related to capital, electricity, and cost. As a result, this		
review aids the plan partnership by recommending the use of BIM as a system that encourages them		
to consider le	an and sustainable changes. BIM was identified as an empowering agent and a cycle for	
achieving lean and sustainable results on development projects in order to meet the examination		
objective. Examination was led through a successive blended technique method zeroing in on		
gathering and	breaking down together subjective and quantifiable information. The examination was	
isolated in qu	laternion stages: Poll study information assortment and experimental investigation of	
information 1	A calculation its drivers inhibitors and suggestions inside compositional associations in	
India: Sami	organized masting and centre actherings for interpretive examination of local BIM	
india; Semi- organized meeting and centre gatherings for interpretive examination of local BIM		
capacities and binning the loss and sustainable results; and contextual investigations examination		
through quan	titative comparative analysis (OCA) to approve the proposed structure. The exploration	
discoveries d	amonstrate that BIM appropriation venture for designers is in experimentation phase and	
the contempo	rary use of BIM which is not investigated to maximum capacity. Structure was created	
by way of a	component of this investigation bequest empower design associations to effectively	
accent RIM of	n tasks headed for acquiring sustainable and lean advantages	
Keywords: F	Building information modelling (BIM), lean and sustainable.	

Paper ID	012068	
Title	Microstructure and mechanical properties of friction-stir welded interstitial-free steel using WC tool	
Authors	Mrinmoy Sinha, Atul Kumar, Ajay Tripathi, Surendra Kumar Chourasiya.	
Abstract: In the present work, interstitial-free steel plates were joined using friction-stir welding.		
The weld inte	The weld integrity was found to be in excellent condition. This work emphasises the evolution of	
microstructure and the enhancement of mechanical properties by friction-stir welding. The		
microstructural characterisation using optical image microscopy revealed the refinement of grains in		
the nugget zone. Vicker's hardness test stopped to a maximum of ~91 VHN in the nugget zone		
compared to	ompared to ~40 VHN in the base material. The tensile test of the welded sample concluded that the	
samples fractured in the region away from the nugget zone and towards the base material. The results		
are conclusive that friction-stir welding is an excellent approach for joining interstitial-free steel		
components	for automotive applications. Keywords: Friction-stir welding, Interstitial-free steel,	
Microstructur	al characterisation, Micromechanical behaviour.	
Keywords: F	Friction-stir welding, Interstitial-free steel, Microstructural characterisation, Mechanical	
properties.		

Paper ID	012069	
Title	Electronic waste: overview, recycling and metal extraction methods	
Authors	VSree Lakshmi, Ch Rahul Satya and D Nikhil Aravind	
Abstract: Wa	ater pollution and contamination is a major environmental issue throughout the world.	
As the world is urbanizing rapidly at an increasing rate the water bodies are getting toxic. Rivers,		
canals, and e	ven groundwater are getting contaminated by various manmade activities. One of the	
major issues of water pollution is disposing and dumping waste into the water bodies. It is considered		
one of the most polluting anthropogenic activities. Out of all the different types of waste, e-waste is		
recorded as a rapidly growing waste stream in the world. Many electronic scrap materials that contain		
potentially harmful materials are dumped into the water bodies. It contains mainly raw materials like		
iron, copper, steel, etc. Every year electronic waste of 50 million tones is being generated globally.		
According to the estimate given by EPA, only 20% of the e-waste is recycled and the remaining		
waste is sent to incinerators or dumped into landfills and water bodies. E-waste is increasing due to		
the swift changes and high usage of technology, falling prices, and the invention of new devices, and		
the outdating of old processors. Over 50% of the e-waste consists of ferrous materials and it can be		
processed and extracted by mechanical shredding, hydrometallurgical methods, and bioleaching, etc.		
In this study, with the help of these methods, we can extract valuable metals like Cu, Al, Ag, Au,		
converting e-waste pollution threats into metal resources thereby increasing the revenue and economy		
of the country. Sustainable e-waste management practices can reduce waste contamination and the		
health risk from	om different harmful materials like dioxins, cadmium, chromium, radioactive isotopes,	
etc.		
Vouvonda	a weather match antegotion DCD's (minted singuit bounds) memomentally new	

Keywords: e-waste, metal extraction, PCB's (printed circuit boards), pyrometallurgy, hydrometallurgy, leachate, bio-metallurgy, bio-leaching, metal solubilisation, metal recovery.

Paper ID	012070	
Title	Effect of notch fillet radius on tensile strength of 817M40 notched bar	
Authors	Aditya Singh, Premanand S Chauhan, Prem Prakash Pandit and Manoj Narwariya	
Abstract: 817M40 steel is a popular grade of hardening alloy steel to its excellent machinability. It is		
manufactured	nanufactured the mechanical components like gears, shafts, studs and bolts. Its hardness in the range	
of 248/302 H	2 HB. In this paper, notch fillet radius effect on tensile loading was investigated. Ushaped	
notched bars	s with three different kinds of notch were employed for tensile testing specimens. The	
changing the	notch root radius and keeping the gross diameter, net diameter and notch depth same for	
all the notche	s. The notch root radius is varied as 0.5, 1.0 and 1.5 mm. The experimental results were	
validated with	h simulation result conduction on Finite Element Tool ANSYS Workbench. Authors	
belief that diff	ferent notch fillet radius may have significant impact on tensile strength.	
Keywords: N	lotch, Fillet Radius, 817M40, Notched Bar, Tensile Strength.	

Paper ID	012071			
Title	Investigating the influence of single-pass and double-pass friction stir processing on mechanical and wear behaviour of AA5083/Al ₂ O ₃ surface			
Authors	Shalok Bharti, Nilesh D. Ghetiya, Kaushik M. Patel and Varun Dutta			
Abstract: Fi manufacture coatings have enhancement material on t composite an over the surfa FSP. Single-p tensile strenge pass aided to along with fir parent materia properties afte was reduced a	riction Stir Processing (FSP) has been established as an efficient technique to surface composite. Since the development of FSP, a variety of surface composite e been produced with the help of this technique. Surface composite provides an in various properties of the base material by providing a coating layer of composite he parent material. Various FSP process parameters can affect the produced surface d its properties. One of the important FSP parameters includes the number of passes ice of a material. In this paper surface composite of AA5083/Al2O3 was produced using bass and double pass FSP were employed to understand its effect on microhardness, th, microstructure coefficient of friction, and wear rate. It was observed that the double produce the homogeneously dispersed reinforcement particles in the surface composite the grain microstructure. FSP helped to enhance the microhardness from 79.5 HV in the al to 136.5 HV in double pass FSP. Moreover, FSP helped to increase the tribological er two passes. However, the ultimate tensile strength of the produced surface composite after FSP.			
Keywords:	Friction Stir Processing, Multi pass, Surface composite, AA5083, Al_2O_3 , Tensile			

strength.

Paper ID	012072
Title	A novel design of bioinspired retinal vascular network-based microchannel for LOC applications
Authors	Sudha R Karbari and Kiran Guruprasad Shetty

Abstract: Microchannels are identified as important components that transfer liquids within a minute area for microfluidic applications. Pressure controlling is an efficient and most accurate way to introduce a certain velocity of equipment. In this study, we described the simulation analysis for microfluidic channels with three inlets and one outlet and went on to optimize it to two inlets and one outlet with appropriate velocity profiles and pressure profiles. The grooves in the microchannel draw inspiration from the vascular network of the retina which is a dynamically interconnected structure composed of three planar vascular layers with bends and grooves at its tip ends. Different fluids enter the inlets and are supposed to get mixed as much as possible before leaving the outlet. The geometry needs to be modified to increase the mixing of the two fluids within 0.05 sec. A passive approach to induce mixing of the biological samples is facilitated by increasing the distances. The fluids travel longer distances for mixing because of diffusive and inertial forces for which the volumetric fluids travel long before mixing takes place. The channel length is increased by introducing groove along the center of each channel to increase the length for the mixing

Keywords: Microchannel, Modelling, Simulation, Velocity, Pressure, COMSOL Multiphysics.

Paper ID	012073		
Title	Design and optimization of piezo resistors for a graphene based MEMS ICP Sensor		
Authors	Sudha R Karbari, Yathish D Vahvale and Karthik Kumar		
Abstract: In	this project the modeling and simulation of MEMS Intracranial pressure sensor using		
Graphene as	the structural layer is defined. At normal health condition, the ICP pressure is in the		
range of 10-1	5 mmHg. Any variation from this range will signify the abnormalities such as neural		
system malfu	nction, nausea, vomiting, paralysis, brain tumor rupturing, and excitement. The purpose		
of the project is to monitor abnormal mental situation which is a result of slight variation in			
cerebrospinal fluid pressure. For Intracranial pressure sensing applications, to measure this slight			
variation of p	ariation of pressure a sensor having high sensitivity need to be employed and is solely depends on		
membrane u	sed. Properties of high Youngs modulus, high thermal stability and electrical		
conductivity,	inertness and zero band gap made it biocompatible to fabricate Intracranial piezo-		
resistive press	sure (ICP) sensor with membrane as graphene. COMSOL Multiphysics tool which is a		
finite elemen	t analysis (FEA) is deployed to optimize the dimensions and parameters for using		
graphene as a	a structural layer for pressure sensor diaphragm. A variability study of piezo resistors		
with three dif	ferent meander shape are designed and simulated in COMSOL. The optimum design is		
further analyz	ed for three different type of pressure sensor specifications as conventional, with n-type		
dopant and gr	aphene as a structural layer. The design with three meander resistance and graphene as		
a structural la	yer provides a strain induced of 0.14 with the pressure input of 10 mmHg		
Keywords: P	iezo resistors, MEMS pressure sensor, Graphene		

Paper ID	012074		
Title	Effect of position and shape of electrode on resonant frequency of an artificial epithelium membrane for frequency selectivity		
Authors	Sudha R Karbari, Suneel Sankanatti, Uttara Kumari M and Shireesha G		

Abstract: Postoperative medical studies by various groups have shown the relevance of electrode position on the hearing outcome of the Cochlear Implant. There are various types of CI in market that are re-evaluated and changed for its functionality. Prior knowledge of the exact position of the electrode within the cochlea is an important parameter of study to improve the electrical stimulation of the hearing nerve for the implants. Similar studies are performed on the artificial epithelium membrane which involves restoring the function of outer and middle ear without bypassing their functionality and providing solution towards a self sustained implantable cochlea. Different shapes of electrodes are evaluated using various structures in dimensional analysis for improving the displacement and the electric stimulation calculated in terms of voltage. Five designs are modelled and optimized for improving the frequency selectivity for its resonance of an epithelium membrane to function as a biomimetic Epithelium membrane. Simulation studies are carried out using FEA analysis tool to introspect and evaluate the tonotopy of the epithelium membrane in terms of electrode shape and position.

Keywords: Nanotechnology, Cochlear Implant, Finite Element Analysis.

Paper ID	012075	
Title	Optimization of wear and frictional parameters using IWO and PSO algorithms	
Authors	Vajaram Venkata Reddy, Ravi Kumar Mandava, Deepak Kumar, Vijay Pachore, Vikas	
Authors	Kumar and V. Rama Koteswara Rao	
Abstract: In the mechanical industries the tribological properties namely, wear rate and coefficient		
of friction are playing a significant role. Therefore, identifying the optimal parameters of wear and		
coefficient friction is a challenging task. To overcome this difficulty, in the present research work the		
authors are using various non-traditional algorithms such as Invasive Weed Optimization (IWO) and		
Particle Swarm Optimization (PSO) algorithms. The non-linear equation has been developed for T6-		
heat treated Al 7075/SiC/FA MMC's using response surface methodology. The three independent		
parameters as, load, sliding speed and sliding distance are considered to optimize the wear rate (WR)		
and coefficie	nt of friction (COF). Finally, the performances of the established algorithms are	
compared in terms of their ability to develop the optimal solution.		
Keywords: w	year rate, coefficient of friction, heat-treated, IWO, PSO	

Paper ID	012076	
Title	Creep behaviour analysis of brass bar on variable temperature	
Authors	Md Danish Iqbal, Premanand S Chauhan, Avadesh K Sharma & Prem Prakash Pandit	
Abstract: This paper presents the behaviour of Creep of Brass bar at different temperatures i.e.		
300oC, 500o	00oC and 600oC. It is necessary to perceive the behaviour of creep of Brass bar at different	
temperature	re conditions because this copper and its alloy are used in several high temperature	
applications.	Results indicate that temperature has significant effect on the rate of deformation and	
life of compo	nent.	
Keywords: C	Creep deformation, Brass, Creep at different temperature conditions.	

Paper ID	012077	
Title	Design optimisation of air filters using ANSYS fluent	
Authors	Sandeep Agrawal, Premanand S Chauhan and Prem Prakash Pandit	
Abstract: The performance under optimize with metal sc centrifugal for has also been remarkably a extraordinary 125 nm. The for hours. Aff thickness 0.12	his paper is based on the current status of research and development in the high air filters segment. This can be done by choosing an appropriate filter and operating it zed conditions. The present paper details the applicability of filters used in conjunction reen for the purpose of classifying aerosol. In this paper, the analysis on applicability of orce for achieving enhanced collection efficiency without increasing the pressure drop done. This paper endorses the proposition that the quality of air filters can be improved nd suggests a methodology for achieving the same. The Hepa filter can capture with efficiency of 0.01 x10-9 meter sized particles. The size of the Corona Virus Covid-19 is preliminary study shows that covid-19 can become aerosolized and can remain in the air ter analysis, the flow rate has been increased from an initial value of 21 E 4 m3 /s (5 mm) to the optimized value of 92E4 m3 /s (thickness 0.91 mm) which is a significant	
found that the	e filter shows the maximum performance at a porosity value of 0.95.	
Keywords: A	Aerosol Classification, Air Filtration, Measurement, Nanofiber Filter, Quality Factor.	

For More Details Visit:	http://ic4m.in/
For More Information Contact:	Dr. Avadesh K Sharma TEL: +91 9425128886
Mail At:	ic4m2021@gmail.com
	enquiry@ic4m.in

Organizers and Associates

